首页|基于奖惩阶梯型碳价机制的能源枢纽低碳优化策略

基于奖惩阶梯型碳价机制的能源枢纽低碳优化策略

扫码查看
为进一步降低碳排放水平以及源-荷不确定性对系统运行的影响,文中提出一种基于奖惩阶梯型碳价机制和分布式模型预测控制(distributed model predictive control,DMPC)的能源枢纽(energy hub,EH)日前-日内-实时多时间尺度低碳优化调度策略.引入奖惩阶梯型碳价计算方法,构建EH日前低碳优化调度模型,并制定基于DMPC的日内滚动和实时调整的反馈闭环优化策略,降低源-荷预测误差,提高传统模型预测控制(model predictive control,MPC)的求解效率.在日内阶段,构建以阶梯型碳成本、运行成本和储能调整惩罚成本之和最小为目标的日内滚动优化模型;在实时阶段,分解整体优化问题,建立基于DMPC的多智能体实时调整模型.算例结果表明,文中所提策略能够有效提升系统经济效益,降低源-荷不确定性,实现EH的低碳经济、稳定可靠运行.
Low-carbon optimization strategy for energy hub based on reward-punishment ladder carbon price mechanism
In order to reduce carbon emissions and the impact of source-load uncertainty on system operation,a multi-timescale low-carbon optimization scheduling strategy in day-ahead,intra-day and real-time operations for energy hub(EH)based on a reward-punishment ladder carbon price mechanism and distributed model predictive control(DMPC)is proposed.A reward-punishment ladder carbon price calculation method is introduced and a day-ahead low-carbon optimization scheduling model for EH is constructed.A feedback closed-loop optimization strategy based on DMPC for intra-day rolling and real-time adjustments is formulated.The optimization strategy reduces source-load prediction errors and improves the efficiency of traditional model predictive control(MPC)solving.In the intra-day stage,a rolling optimization model with the objective of minimizing the sum of the ladder carbon price cost,operational cost,and penalty cost for energy storage adjustment is constructed.In the real-time stage,the overall optimization problem is decomposed,and a multi-agent real-time adjustment model based on DMPC is established.The simulation results indicate that the proposed strategy is effective in enhancing the economic efficiency of the system,reducing the uncertainty of source and load,and achieving the low-carbon,economic,stable,and reliable operation for EH.

energy hub(EH)carbon tradingmulti-timescalelow-carbon economic dispatchdistributed model predictive control(DMPC)integrated energy system(IES)multi-objective optimization

吴艳娟、靳鹏飞、刘长铖、王云亮

展开 >

天津理工大学电气工程与自动化学院,天津 300384

天津市复杂系统控制理论及应用重点实验室,天津 300384

天津市新能源电力变换传输与智能控制重点实验室,天津 300384

能源枢纽(EH) 碳交易 多时间尺度 低碳经济调度 分布式模型预测控制(DMPC) 综合能源系统(IES) 多目标优化

天津市科技计划

22ZYCGSN00190

2024

电力工程技术
江苏省电力公司 江苏省电机工程学会

电力工程技术

CSTPCD北大核心
影响因子:0.969
ISSN:2096-3203
年,卷(期):2024.43(3)
  • 17