首页|基于粒子群优化BP神经网络的深基坑支护结构变形预测

基于粒子群优化BP神经网络的深基坑支护结构变形预测

扫码查看
为更好地预测深基坑支护结构变形,采用机器学习算法,基于BP神经网络并引入粒子群优化算法(PSO-BP)优化其结构网络权值与阈值的选取,克服BP神经网络中的参数选取导致BP算法极易陷入局部极值点、收敛速度慢等问题.基于实际工程,采用优化与未优化的BP神经网络开展深基坑墙体水平变形预测,将监测应力与基坑墙体水平变形的复杂非线性系统方程作为黑箱模拟.两类模型的预测结果对比表明,优化的神经网络可以获得更准确的深基坑支护结构变形值的预测值,该PSO-BP算法可以更好地为工程实践提供指导.
Deformation prediction of supporting structure of deep foundation pit based on PSO-BP neural network
Aimed at better predicting the deformation of supporting structures of deep foundation pit,the PSO-BP neural network,a BP neural network optimized by particle swarm optimization(PSO)algorithm,was adopted to optimize the selection of the weights and thresholds in the normal BP neural network.Therefore,the PSO-BP could avoid some disadvantages of BP neural network,such as being easy to fall into local extreme point and slow convergence.Then,based on an actual project,the optimized and unoptimized BP neural network have been used to predict the horizontal deformation of deep foundation pit wall.In the simulation,the complex nonlinear system equation of monitoring stress and horizontal deformation of foundation pit wall are designed as a black box in the model.The comparison of these two methods show that,the PSO-BP can obtain better prediction of the deformation value of the sup-porting structures,which could be a better tool for future practical engineering.

deep foundation pitdeformation predictionBP neural networkparticle swarm optimization

石荔

展开 >

中冶武勘工程技术有限公司,湖北武汉 430080

深基坑 变形预测 BP神经网络 粒子群优化算法

2024

地质学刊
江苏省地质调查研究院,江苏省地质学会,中国地质学会

地质学刊

影响因子:0.621
ISSN:1674-3636
年,卷(期):2024.48(3)