首页|基于第一性原理与机器学习的碳含量对钢铁材料抗氢性能影响

基于第一性原理与机器学习的碳含量对钢铁材料抗氢性能影响

扫码查看
铁素体钢中的氢脆问题一直是研究者们关注热点,尤其是不同碳含量对钢铁材料抗氢性能的影响还不清晰.采用第一性原理计算与机器学习算法相结合的方法,构建了铁-碳-氢体系高精度的机器学习力场(MLFF),通过分子动力学模拟来研究不同碳含量钢中氢原子的扩散行为.高精度的机器学习力场利用神经网络(NN)模型学习多种构型的第一性原理分子动力学(AIMD)结果获得,为了保证机器学习力场能够很好地描述铁-碳-氢体系的统计特性和动力学特性,进行了多种测试.利用该机器学习力场,对不同碳含量的铁素体钢进行了分子动力学模拟,计算了其氢扩散系数.结果发现,随着碳含量的增加,氢的扩散系数总体呈下降趋势,与实验结果吻合较好.建立的算法模型可分析碳含量对钢铁材料抗氢性能的影响,对钢铁材料氢致损伤研究及成分设计具有重要意义.
Influence of carbon content on the hydrogen resistance of steel based on first-principles and machine learning
The hydrogen embrittlement issue in ferrite steels has always been a hot topic of concern for researchers,particularly the unclear influence of different carbon contents on the hydrogen resistance of iron and steel materials.A high-precision machine learning force field(MLFF)for the iron-carbon-hydrogen system was constructed by com-bining first-principles calculations with machine learning algorithms.Molecular dynamics simulations were per-formed to investigate the diffusion behavior of hydrogen atoms in steels with different carbon contents.The high-precision MLFF was trained using a neural network(NN)model based on first-principles molecular dynamics(AIMD)results of multiple configurations.Various tests were conducted to ensure that the machine learning force field could accurately describe the statistical and dynamic properties of the iron-carbon-hydrogen system.Using this MLFF,molecular dynamics simulations were performed on ferrite steels with different carbon contents,and the hy-drogen diffusion coefficients were calculated.It was found that the hydrogen diffusion coefficient generally decreased with increasing carbon content,in good agreement with experimental results.The algorithm model established in this study can analyze the influence of carbon content on the hydrogen resistance of iron and steel materials,which is of significant importance for studying hydrogen-induced damage in steel materials and composition design.

first-principlesmachine learningmolecular dynamics force fieldhydrogen diffusionhydrogen-induced damage

米志杉、范秀如、杨丽、孙旭、李双权、张国信

展开 >

中国钢研科技集团有限公司数字化研发中心,北京 100081

大连工业大学机械工程与自动化学院,辽宁大连 116038

南京钢铁股份有限公司南钢研究院,江苏南京 210035

中石化广州工程有限公司,广东广州 510600

展开 >

第一性原理 机器学习 分子动力学力场 氢扩散 氢致损伤

国家重点研发计划资助项目

2022YFB4003001

2024

金属功能材料
中国钢研科技集团有限公司 中国金属学会功能材料分会

金属功能材料

CSTPCD
影响因子:0.527
ISSN:1005-8192
年,卷(期):2024.31(1)
  • 27