首页|基于双向长短期记忆的广州市PM2.5浓度预测研究

基于双向长短期记忆的广州市PM2.5浓度预测研究

扫码查看
提出一种基于双向长短期记忆网络的PM2.5 浓度预测方法,其可以利用深度学习模型准确预测 1h后的PM2.5 浓度.方法基于随机森林计算的特征重要性来选择预测模型的输入变量,并对数据进行权重分配以减少预测误差,构建双向长短期记忆网络模型最终实现对PM2.5 浓度的精准预测.借助广州市番禺区和南沙区 2021 年~2023年的监控数据进行验证分析,并与传统利用所有输入变量的方法进行对比,所提方案均方根误差减少了 4.92%,平均绝对误差减小了 7.57%,相对均方根误差减小了 4.92%,所提方案能够获得更高的预测精度.
Prediction of PM2.5 Concentration in Guangzhou Based on Bidirectional Long Short-term Memory Network
This paper proposes a prediction method of PM2.5 concentration based on bidirectional long short-term memory network,which can accurately predict PM2.5 concentration after one hour by using deep learning model.This method selects the input variables of the prediction model based on the feature importance of random forest calculation,assigns the weight of the data to reduce the prediction error,and builds a bidirectional long and short term memory network model to achieve the accurate prediction of PM2.5 concentration.Using the monitoring data of Panyu District and Nansha District of Guangzhou from 2021 to 2023 for verification and analysis,and compared with the traditional method using all input variables,the minimum root-mean-square error of the proposed scheme is reduced by 4.92%,the average absolute error is reduced by 7.57%,and the relative root-mean-square error is reduced by 4.92%.The proposed scheme can obtain higher prediction accuracy.

PM2.5 concentration predictionBidirectional long short-term memory networkRandom forestFeature importanceWeight allocationPrediction accuracy

洪达驰、张金谱

展开 >

广东省广州生态环境监测中心站,广东 广州 510006

中国科学院大学,北京 100049

中国科学院广州地球化学研究所,广东 广州 510640

有机地球化学国家重点实验室,广东 广州 510640

展开 >

PM2.5浓度预测 双向长短期记忆网络 随机森林 特征重要性 权重分配 预测精度

广东省科技计划项目广州市科技计划项目

2019B121201002202102080679

2024

环境科技
徐州市环境监测中心站 江苏省环境科学研究院

环境科技

CSTPCD
影响因子:0.969
ISSN:1674-4829
年,卷(期):2024.37(5)