首页|基于机器学习的呼和浩特PM2.5和PM10浓度预测与分析

基于机器学习的呼和浩特PM2.5和PM10浓度预测与分析

扫码查看
针对空气污染物浓度变化的复杂性、非线性等特点,建立机器学习模型对污染物浓度变化预测.通过分析呼和浩特市不同时间尺度下空气污染物时间变化特征,确定把空气污染浓度、气象因素、季节因素和人为因素作为预测模型输入变量.利用灰色关联度分析确定与PM2.5和PM10关联度高的空气污染物,利用主成分分析法提取气象因素中主要气象因子,建立BP神经网络模型和支持向量机模型用于预测PM2.5和PM10的浓度.BP神经网络模型的预测值与实测值接近,训练集和测试集的R2均达到0.8以上;平均绝对误差均小于19;均方根误差均小于25.SVM模型对PM2.5和PM10预测的R2分别为0.895和0.668.
Prediction and Analysis of PM2.5 and PM10 Concentration in Hohhot Based on Machine Learning
A machine learning model was established to predict the change of pollutant concentration according to the complexity and nonlinearity of air pollutant concentration change.By analyzing the time variation characteristics of air pollutants at different time scales in Hohhot,the air pollution concentration,meteorological factors,seasonal factors and human factors were determined as the input variables of the prediction model.The air pollutants with high correlation with PM2.5 and PM10 were determined by grey correlation analysis.The main meteorological factors in meteorological factors were extracted by principal component analysis.BP neural network model and support vector machine model were established to predict the concentration of PM2.5 and PM10.The predicted value of BP neural network model is close to the measured value,and the R2 of training set and test set is above 0.8.The mean absolute error(MAE)was less than 19.The root mean square error(RMSE)was less than 25.The R2 of the SVM model for PMu prediction can reach 0.895,but the prediction R2 for PM10 is only 0.668.

Air pollutantsGrey correlation analysisPrincipal component analysisBP neural networkSupport vector machine

金利山、刘芳

展开 >

内蒙古工业大学资源与环境工程学院,内蒙古自治区 呼和浩特 010051

空气污染物 灰色关联度分析 主成分分析 BP神经网络 支持向量机

2024

环境科技
徐州市环境监测中心站 江苏省环境科学研究院

环境科技

CSTPCD
影响因子:0.969
ISSN:1674-4829
年,卷(期):2024.37(6)