首页|机器学习在抗生素环境污染领域的应用研究进展

机器学习在抗生素环境污染领域的应用研究进展

扫码查看
因抗生素及其降解产物进入生态系统后,能够诱导抗生素抗性基因的产生和传播,严重影响生态系统的稳定性和功能,故迅速且系统地检测并去除抗生素对维护生态平衡和人类健康至关重要.随着计算机科学特别是人工智能技术的发展,机器学习算法已广泛应用于抗生素污染的研究领域.研究表明,机器学习算法作为辅助工具在抗生素污染检测及去除效果评估、抗性基因来源分析应用方面,相较于传统方法展现出更高的效率和准确性.故未来机器学习算法在抗生素污染防治领域的应用将展示出巨大的潜力和实用价值.
The Research Progress of Machine Learning Applications in the Field of Antibiotic Contamination
Antibiotics and their degradation products,once they entered ecosystems,were capable of inducing the production and spread of antibiotic resistance genes,severely impacting the stability and functionality of ecosystems.Therefore,the rapid and systematic detection and removal of antibiotics were crucial for maintaining ecological balance and human health.With the development of computer science,especially artificial intelligence technologies,machine learning algorithms had been widely applied in the field of antibiotic pollution research.Research indicated that machine learning algorithms,compared to traditional methods,demonstrated higher efficiency and accuracy in the detection of antibiotic pollution,analysis of the origins of resistance genes,and the assessment of degradation effects.Consequently,the application of machine learning algorithms in the field of antibiotic pollution control was expected to reveal substantial potential and practical value in the future.

Machine learningAntibioticsResistance genesDetectionRemoval efficiency

林鑫波、田文哲、陈炳坚、王春

展开 >

广东石油化工学院 环境科学与工程学院,广东 茂名 525000

广东石油化工学院 生物食品与工程学院,广东 茂名 525000

机器学习 抗生素 耐药性基因 检测 去除效果

2024

环境科技
徐州市环境监测中心站 江苏省环境科学研究院

环境科技

CSTPCD
影响因子:0.969
ISSN:1674-4829
年,卷(期):2024.37(6)