首页|基于物联网检测的材料关键参数对路基压实度的影响及预测模型

基于物联网检测的材料关键参数对路基压实度的影响及预测模型

扫码查看
针对道路工程建设中路基压实度检测的质量把控问题,文章开展了材料关键参数对路基压实度的影响研究,并提出一种基于集成学习算法的分析及预测模型。研究结果表明,在路基材料参数与压实度变化趋势匹配性分析中,湿密度对路基压实度的影响最为显著。同时,在深度森林(Deep Forest)、XGBoost、随机森林(Random Forest)三种预测模型中,深度森林模型预测最为准确,拟合优度R2可达到0。992 8,显示出高精度的路基压实度预测功能。文章基于一系列数据分析工作,旨在帮助相关企业更好地开展路基压实度质量动态检测工作,并为优化道路建设质量提供决策依据。
In order to solve the problem of quality control of subgrade compaction detection in road engineering construction,the influence of key material parameters on subgrade compaction is studied,and an analysis and prediction model based on ensemble learning algorithm is proposed.The results show that in the matching analysis of subgrade material parameters and the change trend of compaction,the wet density has the most significant influence on the compaction of subgrade.At the same time,among the three prediction models of deep forest,XGBoost and random forest,the deep forest model is the most accurate,and the goodness of fit R2 can reach 0.992 8,showing the high-precision prediction function of subgrade compaction.Based on a series of data analysis,this paper aims to help relevant enterprises better carry out the dynamic detection of subgrade compaction quality,and provide a decision-making basis for the optimization of the current road construction quality improvement work.

subgrade worksIoT detectionmaterial key parametersdeep forest prediction model

翟金陵、葛光华

展开 >

中路交科检测技术有限公司,江苏 南京 210000

盐城市交通运输综合行政执法支队,江苏 盐城 320900

路基工程 物联网检测 材料关键参数 深度森林预测模型

2024

江苏建材
江苏省建材工业协会

江苏建材

影响因子:0.257
ISSN:1004-5538
年,卷(期):2024.(5)