首页|机电设备振动信号故障诊断算法研究

机电设备振动信号故障诊断算法研究

扫码查看
研究机电设备振动信号故障诊断问题,由于运行在复杂工况下的故障信号很容易淹没在噪声中,而传统的特征提取方法不能较好地对特征信号准确提取,降低了故障诊断的准确性.针对上述问题,提出了基于频带方差的小波包分解与参数优化的支持向量机的故障诊断算法.首先利用振动信号的小波包分解系数计算各子频带的方差,并作为特征向量.然后将特征向量作为支持向量机的输入优化其参数,对故障进行“多对多””的分类.仿真结果表明,提出的算法提高了机电设备振动信号故障诊断的准确率.
Research on Fault Diagnosis Algorithm for Vibration Signals of Electromechanical Equipment
Fault signals operated in a complex condition is easy to be lost in the noises,however,the traditional methods for feature exaction can not get good results,reducing the accuracy of fault diagnosis.To solve this problem,a new algorithm for fault diagnosis is purposed based on band variance of wavelet packet decomposition and parameters optimized support vector machine.First,the vibration signal wavelet packet decomposition coefficients were calculated for each sub-band variance and used as feature vectors.Then the feature vectors acted as SVM input to optimize its parameters and achieve fault "multi-to-multi" classification.The simulation results show that the algorithm can improve the fault diagnostic accuracy of electromechanical equipment vibration signal.

Feature extractionWavelet package decompositionVarianceFault diagnosisSupport vector Machine(SVM)Parameter optimization

王宇、罗倩、纪厚业

展开 >

北京信息科技大学信息与通信工程学院,北京100101

特征提取 小波包分解 方差 故障诊断 支持向量机 参数优化

北京市科技创新提升计划项目

PXM2016_014224_000021

2017

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD北大核心
影响因子:0.518
ISSN:1006-9348
年,卷(期):2017.34(5)
  • 8
  • 8