首页|一种多基地浮标阵位优化方法

一种多基地浮标阵位优化方法

扫码查看
针对水域监视中多基地浮标发射、接收节点阵位布置问题,提出了一种基于遗传粒子群算法的阵位优化方法。基于Argo浮标数据和ETOPO1 地形数据计算得到真实海洋环境下的传播损失,结合双基地声纳方程和概率融合建立起多基地浮标阵性能评估模型。采用粒子群算法、遗传算法和遗传粒子群算法对该模型进行优化。仿真结果表明,经过优化后的多基地浮标阵,其覆盖能力与传统布阵方案相比其探测能力有明显的提高,且遗传粒子群算法在搜索能力和收敛速度上更为均衡,达到了优化布防的目的。
Multistatic Buoy Array Optimization Algorithm
According to the problem of transmitter and receiver node arrangement of multistatic buoy in sea area surveillance,this paper presents an array optimization method based on GAPSO(genetic algorithm-particle swarm optimization).Firstly,based on Argo buoy data and ETOPO1 topographic data,the transmission loss in the real marine environment was calculated,and then the performance evaluation model of multistatic buoy array was estab-lished by probability fusion based on the bistatic sonars equation.Secondly,we took the effective coverage rate of the model as the objective function,and then particle swarm optimization(PSO),genetic algorithm(GA)and GAPSO were used to optimize the array.The simulation results show that the coverage ability of the optimized multistatic buoy array is significantly improved compared with the traditional array scheme.Compared with PSO and GA,the GAPSO has obvious improvement in search ability and convergence speed,which achieves the purpose of optimal defense de-ployment.

Multistatic buoySearching efficiency evaluationFusion swarm intelligence algorithmArray optimiza-tion

秦瑞廷、赵云、蔡清裕、孙海洋

展开 >

河南科技大学,河南 洛阳 471000

国防科技大学,湖南 长沙 410000

湖南三一工学院,湖南 长沙 410000

多基地浮标 搜索效能评估 融合的群智能算法 阵位优化

国家自然科学基金

11904406

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 13