首页|基于HDBSCAN算法的终端区航迹聚类

基于HDBSCAN算法的终端区航迹聚类

扫码查看
针对机场终端区运行环境复杂,空中交通流密度分布不均的问题,提出了一种基于快速动态时间规整(FastDTW)和层次密度聚类(HDBSCAN)算法识别具有密度差异的交通流,以挖掘终端空域的交通流模式。结合航迹的多维特征,对原始航迹数据进行重采样;利用FastDTW方法构建航迹相似度矩阵,应用HDBSCAN方法对输入矩阵进行聚类。运用终端区真实航迹数据进行仿真验证,仿真结果表明,上述方法可以实现航迹精细化聚类,有效识别不同密度的空中交通流。
Aircraft Trajectory Clustering in Terminal Area Based on HDBSCAN Algorithm
Aiming at the problem of complex operating environment and uneven distribution of air traffic flow den-sity in the airport terminal area,a Fast Dynamic Time Warping(FastDTW)combined with Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm is proposed to identify traffic flows with density differences in order to explore the traffic flow patterns in the terminal airspace.Combining the multidimension-al characteristics of the trajectory,the original trajectory data are resampled;the trajectory similarity matrix is con-structed using the FastDTW method,and the HDBSCAN method is applied to cluster the input matrix.The simulation results show that the above method can achieve fine clustering of trajectories and effectively identify air traffic flows of different densities by using real trajectory data in the terminal area for simulation verification.

Air transportationAircraft trajectory clusteringDynamic time warpingHDBSCAN

王志伟、刘继新、杨宋瑞雪、田文

展开 >

南京航空航天大学民航学院,江苏 南京 211106

航空运输 航迹聚类 动态时间规整 层次密度聚类

国家重点研发计划国家自然科学基金项目国家自然科学基金项目

2021YFB16005005200217871971112

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 16