计算机仿真2024,Vol.41Issue(1) :53-57,102.

基于GA-BP神经网络的大型客机气流角估计方法

AirFlow Angle Estimation Method for Large Passenger Aircraft Based on GA-BP Neural Network

张伟 张喆 龚孝懿 王昕楠
计算机仿真2024,Vol.41Issue(1) :53-57,102.

基于GA-BP神经网络的大型客机气流角估计方法

AirFlow Angle Estimation Method for Large Passenger Aircraft Based on GA-BP Neural Network

张伟 1张喆 1龚孝懿 2王昕楠3
扫码查看

作者信息

  • 1. 哈尔滨工程大学智能科学与工程学院,黑龙江 哈尔滨 150001
  • 2. 上海飞机设计研究院,上海 201210
  • 3. 上海大学通信与信息工程学院,上海 200444
  • 折叠

摘要

为了解决硬件冗余难以克服的气流角传感器共因故障问题,进一步提高飞机气流角信号的可靠性,研究了基于GA-BP神经网络的气流角估计方法.通过BP神经网络融合姿态角、加速度、风速等参数来实现不依赖气流角传感器的气流角估计;引入遗传算法对神经网络权值和阈值进行全局优化,提高估计精度;对某大型客机的试飞数据预处理后用于模型的训练和测试.仿真结果表明,训练完成的GA-BP神经网络模型对气流角的估计值贴近实际值,稳定性和精度明显高于BP神经网络.上述方法给飞机增加一个余度的气流角信号,可用于传感器故障时为飞机提供可靠的气流角信号.

Abstract

In order to solve the common cause fault of airflow Angle sensor which is difficult to overcome by hard-ware redundancy and further improve the reliability of aircraft air flow Angle signal,an air flow Angle estimation meth-od based on GA-BP neural network was studied.BP neural network was used to integrate attitude Angle,accelera-tion,wind speed and other parameters to estimate the flow Angle independently of the flow Angle sensor.Genetic algo-rithm was introduced to optimize the weights and thresholds of neural network globally to improve the estimation accu-racy.The model was trained and tested with the pre-processed flight test data of a large aircraft.The simulation re-sults show that the trained GA-BP neural network model's estimation of the airflow angle is close to the actual value,and the stability and estimation accuracy are significantly higher than those of the BP neural network.This method adds a residual air flow Angle signal to the aircraft,which can be used to provide reliable air flow Angle signal for the aircraft when the sensor is faulty.

关键词

气流角估计/神经网络/遗传算法/试飞数据预处理/大型客机

Key words

Estimation of flow angle/Neural network/Genetic algorithm(GA)/Flight test data preprocessing/Large passenger aircraft

引用本文复制引用

基金项目

国家自然科学基金(E1102/52071108)

黑龙江省自然科学基金(JJ2021JQ0075)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
参考文献量16
段落导航相关论文