首页|一种贝叶斯网络的卫星姿态系统故障诊断方法

一种贝叶斯网络的卫星姿态系统故障诊断方法

扫码查看
姿态控制系统是卫星系统中重要的组成部分,由于其高昂的造价,发生故障会引发恶劣的影响。随着航天科技的发展,卫星姿态控制系统也逐渐复杂,其可能发生故障的概率也随之增大。针对传统神经网络故障诊断结果缺少置信度、鲁棒性较差以及易发生过拟合的缺点,在对贝叶斯统计和深度学习理论研究的基础上,提出了一种基于贝叶斯线性层与贝叶斯卷积层的Bayesian LeNet结合的网络模型。通过对卫星姿态控制系统飞轮部件的故障数据分析和处理,进而采用该模型对故障仿真,并与贝叶斯全连接神经网络与传统LeNet进行对比,实验结果表明:在飞轮可能发生的三种故障前提下,上述网络模型准确率较高,过拟合现象较轻。验证了上述网络模型的有效性。
A Bayesian Network Fault Diagnosis Method for Satellite Attitude System
The attitude control system is an important component of satellite systems,and due to its high cost,mal-functions can cause adverse effects.With the development of aerospace science and technology,the satellite attitude control system has become more and more complex,and the probability of its failure has also increased.Considering the lacking of confidence,poor robustness and easy overfitting in fault diagnosis of traditional neural networks,this pa-per proposes a new Bayesian LeNet network model which composed of a Bayesian linear layers and a Bayesian convo-lutional layers.After analyzing and processing of the fault data of the flywheel components of the satellite attitude con-trol system,the Bayesian network model was used to conduct the fault simulation experiment and compared with the Bayesian fully connected neural network and the traditional LeNet.The results show that under the premise of three possible failures of the flywheel,the Bayesian neural network has better accuracy and less overfitting.The Bayesian neural network is verified.

Satellite attitude control systemFault diagnosisBayesian neural networkDeep learning

蒋强、刘恩雨、何旭、张伟

展开 >

沈阳理工大学,辽宁 沈阳 110168

中国科学院沈阳自动化研究所,辽宁 沈阳 110016

卫星姿态控制系统 故障诊断 贝叶斯神经网络 深度学习

面向地空无人平台测控链路混沌隐蔽通信技术研究

LG202014

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 12