首页|面向无人驾驶场景的实时语义分割算法研究

面向无人驾驶场景的实时语义分割算法研究

扫码查看
针对现有无人驾驶场景中分割精度与运行速度之间难以取得平衡的问题,提出一种新型的实时语义分割算法。首先,利用残差结构(Residual)构建出高效特征提取单元(EFEU)以更好地感知空间和语义信息;其次,采用了一种双边结构,其中空间分支结合池化操作保留浅层空间信息,上下文分支用来提供大的感受野,捕获深层上下文信息,两条分支在网络的不同阶段合并,以加强不同层次之间的信息传播。最后结合深度可分离卷积和通道重排操作构建上下文融合模块,将不同层次之间的信息进行融合,进一步提高模型的分割效果。在常用的数据集上进行实验,实验结果证明了所提方法的有效性。
Research on Real-Time Semantic Segmentation Algorithm for Driverless Scene
Aiming at the problem that it is difficult to achieve a balance between segmentation accuracy and run-ning speed in existing unmanned driving scenarios,a new real-time semantic segmentation algorithm is proposed.First,an Efficient Feature Extraction Unit(EFEU)is constructed using the residual structure(Residual)to better per-ceive spatial and semantic information.Secondly,a bilateral structure is adopted,in which the spatial branch combined with the pooling operation preserves the shallow spatial information,and the context branch is used to pro-vide a large receptive field and capture deep contextual information.These two branches are merged at different stages of the network to enhance the information propagation between different layers.Finally,a context fusion module is constructed by combining depth-wise separable convolution and channel shuffle to fuse information between different levels to further improve the segmentation effect of the model.This paper conducts experiments on commonly used datasets,and the experimental results show the effectiveness of the proposed method.

Real-time semantic segmentationEfficient feature extractionBilateral structureContext fusion

文凯、韦胜男、杨一鹏

展开 >

重庆邮电大学通信与信息工程学院,重庆 400065

重庆邮电大学通信新技术研究中心,重庆 400065

实时语义分割 高效特征提取 双边结构 上下文融合

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 19