首页|深度学习下直流输电线路绝缘子破损识别仿真

深度学习下直流输电线路绝缘子破损识别仿真

扫码查看
输电线路绝缘子由于架设在野外,受天气因素、环境污染等影响,使得绝缘子发生破损,导致输电线路供电中断。为避免输电线路发生故障,最大程度保障电网安全运行,提出基于深度学习的直流输电线路绝缘子破损识别方法。分析航拍图像噪声来源,利用中值滤波算法确定像素中值,经过非线性平滑处理去除噪声。分析常见的绝缘子破损类型、破损表现及原因,建立随机森林决策树。通过深度学习,选出明显的破损特征作为识别依据;构建Alex Net卷积神经网络模型,计算损失函数,确定最佳学习速率;通过学习训练,输出识别结果。实验结果显示,所提方法能够增强图像细节信息,且绝缘子破损识别正确率在 0。8 以上、收敛速度快。
Simulation of Insulator Damage Identification in DC Transmission Line Using Deep Learning
Due to being installed in the wild,insulators on transmission lines are affected by weather factors,en-vironmental pollution,and other factors,leading to damage and interruption of power supply.To avoid failure and en-sure safe operation of the power grid,a method for identifying damage on insulators of DC transmission line was pro-posed based on deep learning.Firstly,the noise source in aerial images was analyzed,and the median filtering algo-rithm was used to determine the pixel median values.Then,non-linear smoothing was applied to remove noise.Sec-ondly,common types of damage,damage characteristics,and causes of insulator were analyzed.Meanwhile,a random forest decision tree was established.Using deep learning algorithm,obvious damage features were selected as the basis for recognition.Next,a convolutional neural network model based on Alex Net was constructed,and the loss function was calculated to determine the optimal learning rate.Finally,the recognition results were outputted based on the learning and training.Te experimental results show that the proposed method can enhance image details and achieve an accuracy rate of over 0.8 in identifying damage on insulators of DC transmission lines with fast convergence speed.

Deep learningDC transmission lineInsulatorDamage identificationConvolutional neural network

叶萧然、杜玉红、刘群坡

展开 >

河南理工大学鹤壁工程技术学院,河南 鹤壁 458030

河南理工大学电气工程与自动化学院,河南 焦作 454003

深度学习 直流输电线路 绝缘子 破损识别 卷积神经网络

2021年度河南省高等学校重点科研项目2021年度河南省高等学校重点科研项目

22B52001822B470007

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 15