首页|基于DenseNet ECA的儿童异常胸片筛查

基于DenseNet ECA的儿童异常胸片筛查

扫码查看
胸片是筛查儿童肺部异常最常见、最容易获得的低成本成像方式。然而,在部分医疗资源匮乏地区,由于有经验的放射科医生数量稀少,导致胸片的解读效率低下,易造成对肺部异常患儿的漏诊、误诊。因此以儿童健康及异常胸片为研究对象,通过使用ECA注意力机制及PReLU激活函数对DenseNet进行改进,提出一种用于儿童异常胸片筛查任务的DenseNet ECA模型。实验结果表明,上述模型对于儿童健康、异常胸片的分类效果优于常用卷积神经网络模型,分类准确率、灵敏度、特异性分别可达 93。57%,91。47%,95。83%,参数量仅为 6。96M。上述模型能够帮助医生进行儿童异常胸片的预先筛查,可有效降低临床阅片压力,提高医生诊断效率。
Screening Abnormal Chest X-Ray in Children Based on DenseNet ECA
Chest X-ray is the most common and easily available low-cost imaging method for screening pulmonary abnormalities in children.However,in some areas where medical resources are scarce,due to the small number of experienced radiologists,the interpretation of chest X-ray is inefficient,which is easy to cause missed diag-nosis and misdiagnosis of children with pulmonary abnormalities.Therefore,this paper took children's health and ab-normal chest X-ray as the research object,improved DenseNet by using ECA attention mechanism and PReLU activa-tion function,and proposed a deep learning modelDenseNet ECA for children's abnormal chest X-ray screening task.The experimental results show that the classification effect of this model for children's healthy and abnormal chest X-rayis better than that of common convolutional neural networkmodels.The classification accuracy,sensitivity and spe-cificity can reach 93.57%,91.47%and 95.83%respectively,and the parameter quantity is only 6.96M.The model can help doctors to pre-screen abnormalchest X-ray of children,effectively reduce the pressure ofclinical film reading and improve the diagnostic efficiency of doctors.

Abnormal chest x-ray screening in childrenAttention mechanismSimulation

段梦宇、吴英飞、袁贞明、俞刚

展开 >

杭州师范大学信息科学与技术学院,浙江 杭州 311121

移动健康管理系统教育部工程研究中心,浙江 杭州 311121

浙江大学医学院附属儿童医院数据信息部,浙江 杭州 310052

国家儿童健康与疾病临床医学研究中心,浙江 杭州 310052

展开 >

儿童异常胸片筛查 注意力机制 仿真

国家重点研发计划国家自然科学基金面上项目

.2019YFE012620062076218

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 18