首页|面向火灾的多尺度目标检测算法

面向火灾的多尺度目标检测算法

扫码查看
传统的火灾检测依靠各种传感器或者一些传统算法,只适用于特定场景,鲁棒性差,检测精度低,定位不准,并且检测时间长,不能满足实时性的要求。针对以上问题,提出一种基于 YOLO V3 的多尺度目标检测算法,自动提取火焰特征并实现多尺度的火焰检测。首先对YOLO V3 的结构进行改进,将YOLO V3 原先的特征提取网络Darknet-53 替换为DenseNet,削弱网络加深带来的梯度消失问题,并且能够增强特征复用,提高网络对低层特征的学习,接着,为了消除感受野内像素作用的高斯分布,将 DenseNet中的下采样改为空洞卷积。最后,优化锚框的定位方式,并根据新的定位方式修改损失函数,使网络对目标的定位更加准确。实验结果表明,改进的算法准确率和召回率为 90%,85%。检测速度可以达到 31 帧/s,能够满足火灾检测对准确率和实时性的要求。
A Multi-Scale Object Detection Algorithm for Fires
Traditional fire detection relies on various sensors or some traditional algorithms.These methods are only applicable to specific scenarios,with poor robustness,low detection accuracy,inaccurate positioning,and a long detection time,which cannot meet real-time requirements.For the above problems,a YOLO V3-based multi-scale object detection algorithm is proposed to automatically extract flame features and realize multi-scale flame detection.Firstly,the YOLOV3 structure was improved to replace original YOLO V3 feature extraction network Darknet-53 with DenseNet and weaken the gradient extinction problem caused by network deepening,which can enhance the feature taking and improve the network learning of low-level features.Then,in order to eliminate the Gaussian distribution of pixels in the receptive field,the downsampling in DenseNet was changed to dilated convolution.Finally,the positioning mode of anchor box was optimized,and the loss function was modified according to new positioning mode,to make the network more accurate in locating targets.Experimental results show that the improved algorithm accuracy and recall rate are 90%and 85%respectively.The detection speed can reach 31 frames/s,which can meet the accu-racy and real-time requirements of fire detection.

Fire detectionComputer visionMulti-scale object detection

王雷、赵清华、张芯睿

展开 >

太原理工大学信息与计算机学院,山西 晋中 030600

火灾检测 计算机视觉 多尺度目标检测

国家自然科学基金山西省哲社规划课题

616741132020YY210

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 16