首页|基于海明距离的量子k-medians算法

基于海明距离的量子k-medians算法

扫码查看
随着大数据时代的到来,传统数据的相似性度量算法不再适用于高维数据的聚类.基于量子计算,人们提出利用控制交换门(Control-Swap)计算数据间相似度.但是,由于初始量子态的分解和制备是困难的,导致该算法的实用性降低.因此提出一种基于海明距离的量子k-medians(QHk-medians)算法来实现对高维结构化数据的聚类.QHk-medians主要由子程序Hamm DistCalc与GroverOptim组成.设计了子程序Hamm DistCalc和GroverOptim的通用量子线路,并基于IBM Qiskit进行了实验模拟,成功对网络入侵数据聚类.提出的QHk-medians算法量子态构造简单,能准确的测量两个独立高维数据的相似度并实现聚类,与经典k-medians相比,算法时间复杂度降低,分类准确率更高.
Quantum K-Medians Algorithm Based on Hamming Distance
With the advent of the era of big data,traditional data similarity measurement algorithms are no longer suitable for clustering of high-dimensional data.Based on quantum computing,control-swap gate is proposed to cal-culate the similarity between data.However,it is difficult to decompose and prepare the initial quantum state,which reduces the practicability of the algorithm.Therefore,in this paper proposed a quantum k-medians algorithm based on Hamming distance(QHk-medians)to cluster high-dimensional structured data,which is mainly composed of subrou-tines Hamm DistCalc and GroverOptim.We designed the universal quantum circuit of the subroutines Hamm DistCalc and GroverOptim,and conducted an experimental simulation based on IBM Qiskit.The proposed QHk-medi-ans algorithm has a simple quantum state construction and can accurately measure the similarity between two inde-pendent high-dimensional data and achieve clustering.Compared with classical k-media,the algorithm has lower time complexity and higher classification accuracy.

Hamming distanceNetwork intrusion detectionSimulation

辛娟娟、魏贺、戚晗、拱长青

展开 >

沈阳航空航天大学计算机学院,辽宁 沈阳 110136

汉明距离 网络入侵检测 仿真

辽宁省教育研究厅科学研究项目沈阳航天大学高层次人才引进研究基金

LJKZ020818YB06

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 21