计算机仿真2024,Vol.41Issue(1) :409-414.

基于海明距离的量子k-medians算法

Quantum K-Medians Algorithm Based on Hamming Distance

辛娟娟 魏贺 戚晗 拱长青
计算机仿真2024,Vol.41Issue(1) :409-414.

基于海明距离的量子k-medians算法

Quantum K-Medians Algorithm Based on Hamming Distance

辛娟娟 1魏贺 2戚晗 2拱长青2
扫码查看

作者信息

  • 1. 沈阳航空航天大学计算机学院,辽宁 沈阳 110136;沈阳航空航天大学计算机学院,辽宁 沈阳 110136
  • 2. 沈阳航空航天大学计算机学院,辽宁 沈阳 110136
  • 折叠

摘要

随着大数据时代的到来,传统数据的相似性度量算法不再适用于高维数据的聚类.基于量子计算,人们提出利用控制交换门(Control-Swap)计算数据间相似度.但是,由于初始量子态的分解和制备是困难的,导致该算法的实用性降低.因此提出一种基于海明距离的量子k-medians(QHk-medians)算法来实现对高维结构化数据的聚类.QHk-medians主要由子程序Hamm DistCalc与GroverOptim组成.设计了子程序Hamm DistCalc和GroverOptim的通用量子线路,并基于IBM Qiskit进行了实验模拟,成功对网络入侵数据聚类.提出的QHk-medians算法量子态构造简单,能准确的测量两个独立高维数据的相似度并实现聚类,与经典k-medians相比,算法时间复杂度降低,分类准确率更高.

Abstract

With the advent of the era of big data,traditional data similarity measurement algorithms are no longer suitable for clustering of high-dimensional data.Based on quantum computing,control-swap gate is proposed to cal-culate the similarity between data.However,it is difficult to decompose and prepare the initial quantum state,which reduces the practicability of the algorithm.Therefore,in this paper proposed a quantum k-medians algorithm based on Hamming distance(QHk-medians)to cluster high-dimensional structured data,which is mainly composed of subrou-tines Hamm DistCalc and GroverOptim.We designed the universal quantum circuit of the subroutines Hamm DistCalc and GroverOptim,and conducted an experimental simulation based on IBM Qiskit.The proposed QHk-medi-ans algorithm has a simple quantum state construction and can accurately measure the similarity between two inde-pendent high-dimensional data and achieve clustering.Compared with classical k-media,the algorithm has lower time complexity and higher classification accuracy.

关键词

汉明距离/网络入侵检测/仿真

Key words

Hamming distance/Network intrusion detection/Simulation

引用本文复制引用

基金项目

辽宁省教育研究厅科学研究项目(LJKZ0208)

沈阳航天大学高层次人才引进研究基金(18YB06)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
参考文献量21
段落导航相关论文