首页|基于BP神经网络和拓展卡尔曼滤波的轨迹追踪

基于BP神经网络和拓展卡尔曼滤波的轨迹追踪

扫码查看
在室内定位中,超宽带(UWB)技术作为新兴的定位技术,被广泛运用于各种工作场景.由于环境复杂多变,UWB 通信信号容易受到阻挡,对追踪目标定位及运动轨迹判断会产生干扰.为得到追踪目标的运动轨迹,除考虑接受数据是否是在信号受干扰情况下得到的之外,还要对采集数据进行系统噪声过滤,进而得到跟踪目标的运动轨迹.将判别信号是否受到干扰的问题转化为机器学习下的二分类问题,通过建立BP神经网络模型对采集信号进行分类,筛选出没有受到干扰的信号数据,结果表明BP神经网络训练精度高达96.43%,测试精度为 99%.为在实际应用场所中得到运动靶点的轨迹图,利用拓展卡尔曼滤波算法过滤系统噪声,最终得到了跟踪目标的运动轨迹.
Trajectory Tracking Based on BP Neural Network and Extended Kalman Filter
In indoor positioning,ultra-wideband(UWB)technology,as a new positioning technology,is widely used in various working scenes.As the environment is complicated and varied,UWB communication signals are easily blocked,which will interfere with the positioning of the tracking target and the judgment of the motion tracking.In or-der to obtain the motion track of the target,in addition to considering whether the collected data is obtained under the condition of signal interference,the system noise filtering should be carried out on the data,and then the movement trajectory of the target can be obtained.In this paper,the problem of discriminating whether the signal is disturbed was transformed into the binary classification problem under machine learning.The collected signals were classified by establishing the BP neural network model,and the data without interference were filtered out.The calculation results show that the training accuracy of the BP neural network is as high as 96.43%and the testing accuracy is 99%.On this basis,in order to get the trajectory diagram of the moving target in practical application scenarios,the extended Kalman filter algorithm was used to filter the system noise,and finally,the trajectory of the tracking target was ob-tained.

Positioning technologyNeural networkKalman filterTrajectory tracking

陈建、向露、严明、郭耀村

展开 >

扬州大学机械工程学院,江苏 扬州 225000

定位技术 神经网络 卡尔曼滤波 轨迹追踪

江苏省自然科学基金青年基金扬州大学研究生教育改革实践项目江苏省研究生科研与实践创新计划项目

BK20190873JGLX2021 002SJCX21 1557

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 19