首页|基于贪婪算法的大数据兼容性云存储方法仿真

基于贪婪算法的大数据兼容性云存储方法仿真

扫码查看
现阶段云环境下大数据的存储仍存在存储效率低、带宽合理性差的问题,因大数据的数量巨大、难收集和分析的特点,导致很难实现大数据的精准兼容存储.为此提出基于贪婪算法的大数据兼容性云存储方法.根据大数据云存储流程获取数据存储基本框架.引入贪婪算法,通过贪婪算法的循环迭代重构云存储节点的比特功率,使初始云存储环境转化成具有相同访问数据选择策略的优化云存储环境,提高大数据云存储流程的兼容性,完成大数据兼容性的云存储.实验测试结果表明,提出方法在规定时间内的数据漏存储量较少,且用户下载数据的响应时间始终低于5ms,大数据兼容性云存储的错误样本量低于 100bit,说明提出方法的可应用性较强,研究价值较高.
Simulation of Big Data Compatibility Cloud Storage Method Based on Greedy Algorithm
At this stage,the storage of big data in the cloud environment still has the problems of low storage effi-ciency and poor rationality of bandwidth.Due to the huge amount of big data and the characteristics of difficult collec-tion and analysis,it is difficult to achieve accurate and compatible storage of big data.Therefore,a big data compatible cloud storage method based on greedy algorithm is proposed.Obtain the basic framework of data storage according to the big data cloud storage process.The greedy algorithm is introduced to reconstruct the bit power of the cloud storage node through the cyclic iteration of the greedy algorithm,so as to transform the initial cloud storage environment into an optimized cloud storage environment with the same access data selection strategy,improve the compatibility of the big data cloud storage process,and complete the big data compatible cloud storage.The experimental test results show that the proposed method has less data missing storage reserves within the specified time,the response time of users downloading data is always less than 5ms,and the error sample size of big data compatibility cloud storage is less than 100bit,indicating that the proposed method has strong applicability and high research value.

Big datacompatibilityCloud storageGreedy algorithmCyclic iterative reconstruction

朱立炫、卢照、卢金清

展开 >

广西民族大学相思湖学院,广西 南宁 530225

桂林电子科技大学材料科学与工程学院,广西 桂林 541004

大数据 兼容性 云存储 贪婪算法 循环迭代重构

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(1)
  • 15