计算机仿真2024,Vol.41Issue(2) :196-201.

基于迭代p阈值算法压缩感知磁共振成像重构

Reconstruction Network of Compressed Sensing Magnetic Resonance Imaging Based on Iterative P-threshold Algorithm

杜秀丽 李楷 刘晋廷 吕亚娜
计算机仿真2024,Vol.41Issue(2) :196-201.

基于迭代p阈值算法压缩感知磁共振成像重构

Reconstruction Network of Compressed Sensing Magnetic Resonance Imaging Based on Iterative P-threshold Algorithm

杜秀丽 1李楷 1刘晋廷 1吕亚娜1
扫码查看

作者信息

  • 1. 大连大学通讯与网络重点实验室,辽宁 大连 116622;大连大学信息工程学院,辽宁 大连 116622
  • 折叠

摘要

从优化网络结构出发,在基于迭代软阈值网络的压缩感知磁共振成像深度网络基础上,加入由p阈值函数组成的优化模块,进一步优化软阈值函数,以抑制噪声,减少重建误差,从而提高重建质量.上述算法结合了压缩感知磁共振重建和深度学习的优势,所有参数都是端到端学习得到的,既具有很好的理论可解释性,又具有良好的网络泛化能力.对上述算法与其它算法进行对比,仿真结果表明,所提算法提高了磁共振成像的重建精度,特别对于结构复杂的磁共振图像重建效果更好.

Abstract

Based on the deep network of compressed sensing magnetic resonance imaging based on iterative soft threshold network,an optimization module composed of P-threshold function was added to further optimize the soft threshold function to suppress noise and reduce reconstruction error,so as to improve reconstruction quality.The algo-rithm combines the advantages of compressed sensing magnetic resonance reconstruction and deep learning,and all parameters are learned end-to-end,which has good theoretical interpretability and good network generalization ability.Compared with other algorithms,the simulation results show that the proposed algorithm improves the recon-struction accuracy of magnetic resonance imaging.

关键词

迭代阈值算法/压缩感知/磁共振成像

Key words

Iterative thresholding algorithms(ISTA)/Compressed sensing/Magnetic resonance imaging

引用本文复制引用

基金项目

辽宁省百千万人才工程项目(2018921080)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
参考文献量20
段落导航相关论文