首页|基于特征子空间的SOM天基状态检测算法

基于特征子空间的SOM天基状态检测算法

扫码查看
在天基信息网中,资源监控系统采集到的性能指标数据量大、冗余特征较多,导致状态检测准确率低、检测时间长等问题。针对以上问题,提出了基于特征子空间的SOM状态检测算法。将特征提取算法嵌入到SOM神经网络模型中,使得网络在训练的同时提取每个类别对应的属性特征,构成状态对应的特征子空间。并利用状态的特征子空间计算特征对于类别的贡献度,优化 SOM神经网络的目标函数,进而提高模型对卫星计算任务执行单元状态检测的速度与准确率。仿真了在不同状态检测模型下的检测准确率、检测灵敏度以及检测时间。结果表明,提出的状态检测模型在检测准确率、检测灵敏度以及检测时间等方面都具有较好的性能。
SOM Space-Based Resource State Detection Algorithm Based on Feature Subspace
In the space-based information network,the resource monitoring system captures a large amount of data and redundant features of performance indicators,which leads to low accuracy of state detection and long detection time.To address this problem,a SOM state detection algorithm based on feature subspace weighting is proposed.The feature extraction algorithm was embedded into the SOM neural network model,so that the network can extract the at-tribute features corresponding to each category while training,and form the feature subspace corresponding to the state.The contribution of the feature to the category was calculated by using the feature subspace of the state,and the objective function of the SOM neural network was optimized,so as to improve the speed and accuracy of the model for satellite state detection.The experiment simulated the detection accuracy,detection sensitivity and detection time un-der different state detection models.The results show that the state detection model proposed in this paper has good performance in terms of detection accuracy,detection sensitivity and detection time.

Space-based information networkFeature subspaceSOMStatedetection

刘军、陈锐、肖倩倩、王宇飞

展开 >

计算机科学与工程学院,辽宁 沈阳 110169

天基信息网 特征子空间 自组织映射神经网络 状态检测

国家自然科学基金国家自然科学基金中央高校基本科研业务费专项中央高校基本科研业务费专项

6207113461671141N2116015N2116020

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 15