首页|基于1D-CNN-PSO-SVM的电力变压器故障诊断

基于1D-CNN-PSO-SVM的电力变压器故障诊断

扫码查看
针对变压器故障诊断过程中人工提取特征泛化性差,诊断正确率低的问题,提出了一种基于一维卷积神经网络(1D-CNN)和粒子群优化支持向量机(PSO-SVM)的故障诊断模型。首先构建一个 1D-CNN作为特征提取器,以变压器油中溶解气体原始数据作为输入进行训练,逐层自适应的学习与故障类型相关性更高的深层抽象特征。训练完成后,用分类性能更优的PSO-SVM代替传统 1D-CNN中的Softmax分类器实现变压器故障类型的识别。仿真结果表明,经 1D-CNN提取特征后,不同故障类型的样本间具有很高的区分度;利用PSO-SVM对提取得到的特征进行分类识别,相比于采用Softmax分类器时,诊断准确率得到了进一步提高,验证了所提方法的有效性。
Fault Diagnosis of Power Transformer Based on 1D-CNN-PSO-SVM
Aiming at the problem of poor generalization and low diagnostic accuracy of artificial feature extraction in the process of transformer fault diagnosis,a fault diagnosis model based on one-dimensional convolutional neural network(1D-CNN)and particle swarm optimization support vector machine(PSO-SVM)is proposed.Firstly,a 1D-CNN was constructed as a feature extractor,the original data of dissolved gas in transformer oil was used as input for training,and the deep abstract features with higher correlation with fault types were adaptively learned layer by layer.After the training was completed,the PSO-SVM with better classification performance was used to replace the Softmax classifier in the traditional 1D-CNN to realize the identification of transformer fault types.The simulation results show that after extracting features by 1D-CNN,the samples of different fault types have high discrimination.Using PSO-SVM to classify and recognize the extracted features,compared with using Softmax classifier,the diagnostic accuracy has been further improved,which verifies the effectiveness of the method proposed in this paper.

TransformerFault diagnosisOne-dimensional convolution neural networkSupport vector machineParticle swarm optimization algorithm

陈志勇、杜江

展开 >

河北工业大学河北省电磁场与电器可靠性重点实验室,天津 300130

河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津 300130

变压器 故障诊断 一维卷积神经网络 支持向量机 粒子群优化算法

国家自然科学基金天津市自然科学基金重点项目河北省自然科学基金

5200704719JCZDJC32100E2018202282

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 13