首页|融合暗通道与Retinex算法的水下图像复原研究

融合暗通道与Retinex算法的水下图像复原研究

扫码查看
针对水下图像存在细节模糊和色彩失真等问题,基于水下光学成像模型,提出了一种融合暗通道先验和Retinex的方法。首先为避免场景中亮白区域影响,提出一种基于四叉树分解方法改进对背景光的估计,进一步分通道对透射率进行估计,引入自适应容差补偿机制,根据图像区域的明亮程度自适应修正透射率,并利用改进的导向滤波细化透射率,消除了图像块效应,利用优化的暗通道先验算法对图像进行清晰化处理得到复原图像;其次用Retinex算法提高水下图像对比度以及校正颜色畸变;然后依据复原图像与Retinex算法增强图像的特点进行像素级融合,最终得到复原后的水下图像。为定量评价复原算法,选取了信息熵、平均梯度和UIQM定量化评价因子。实验结果表明,所提算法在主观及客观评价方面均优于对比算法,为后续水下目标探测提供了研究基础。
Research on Underwater Image Restoration Combining Dark Channel and Retinex Algorithm
Aiming at the problems of blurred details and color distortion in underwater images,based on the un-derwater optical imaging model,this paper proposes a method that integrates dark channel prior and Retinex algorithm.Firstly,in order to avoid the influence of bright white areas in the scene,a quadtree decomposition-based method is proposed to improve the estimation of background light,further estimate the transmittance by channel,intro-duce an adaptive tolerance compensation mechanism,adaptively correct the transmittance according to the brightness of the image area,and refine the transmittance by using an improved guide filter,eliminate the image block effect,and clarify the image by using the optimized dark channel a priori algorithm.The recovered image is obtained by using the optimized dark channel prior algorithm to clarify the image;secondly,the Retinex algorithm is used to improve the contrast of the underwater image and correct the color distortion;then the pixel-level fusion is performed based on the characteristics of the recovered image and the enhanced image by the Retinex algorithm,and the recovered underwater image is finally obtained.To quantitatively evaluate the recovery algorithm,information entropy,average gradient and UIQM quantified evaluation factors are selected.The experimental results show that the proposed algorithm outperforms the comparison algorithm in both subjective and objective evaluations,which provides a research basis for subsequent underwater target detection.

Image processingUnderwater image restorationBackground light estimationImage fusionDark

李玉鑫、梁天全、于会山、侯秀月

展开 >

聊城大学物理科学与信息工程学院,山东 聊城 252000

聊城大学地理与环境学院,山东 聊城 252000

图像处理 水下图像复原 背景光估计 图像融合 暗通道先验

山东省自然科学基金山东省自然科学基金国家自然科学基金

ZR2021MD090ZR2018BD00831800367

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 19