首页|基于改进YOLOv4的钢材表面缺陷检测

基于改进YOLOv4的钢材表面缺陷检测

扫码查看
针对钢材表面缺陷检测精度低,易漏检、误检、定位不准确等问题,提出一种基于改进YOLOv4 的钢材表面缺陷检测算法,首先使用K-means++算法分析标注框的分布信息,获取最优的锚框,提高定位精度,减少网络损失;其次在YOLOv4 网络原有特征层基础上继续增加一浅层特征即尺度为104×104 的新特征层,增大特征检测尺度,提高小缺陷目标检测精度;最后在原始主干网络的基础上引进注意力机制,使网络更多关注有用信息,从而使检测更准确。将上述算法与其它算法在NEU-DET数据集上进行对比实验,所提算法平均检测精度相较于原YOLOv4 提高了 4。69%达到 78。10%,相较于目前其它的主流目标检测算法也更优秀。
Steel Surface Defect Detection Based on Improved YOLOv4
Aiming at the problems of low detection accuracy of steel surface defects,easy missed detection,false detection,and inaccurate positioning,this paper proposes a steel surface defect detection algorithm based on improved YOLOv4.The excellent anchor frame improves the positioning accuracy and reduces the network loss;Secondly,on the basis of the original feature layer of the YOLOv4 network,a shallow feature layer,that is,a new feature layer with a scale of 104×104,is added to increase the feature detection scale and improve the target of small defects.Detection accuracy;Finally,an attention mechanism is introduced on the basis of the original backbone network,so that the net-work pays more attention to useful information,thereby making the detection more accurate.Comparing the algorithm in this paper with other algorithms on the NEU-DET dataset,the average detection accuracy of the algorithm in this paper has increased by 4.69%to 78.10%compared with the original YOLOv4,which is also better than other current mainstream target detection algorithms.

Steel surface defect detectionDeep learningAttention mechanism

赵慧、钮焱、李军

展开 >

湖北工业大学计算机学院,湖北 武汉 430068

钢材表面缺陷检测 深度学习 注意力机制

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 20