首页|基于YOLO5Face重分布的小尺度人脸检测方法

基于YOLO5Face重分布的小尺度人脸检测方法

扫码查看
针对复杂场景下小尺度人脸检测精度较低的问题,提出了一种基于YOLO5Face重分布的小尺度人脸检测方法。方法以YOLO5Face为基础,在网络浅层引入改进的CBAM注意力并对模型计算重分布,提升复杂场景下小尺度人脸检测精度的同时降低模型参数量;采用融合mixup的数据增强方法,充分训练模型小尺度人脸检测分支;依据人脸检测特性,将softmax损失作为分类损失以最大化类间特征的差异。在WiderFace各个子集上的实验结果表明,与主流人脸检测方法相比,改进后的模型满足实时性的同时,小尺度人脸检测精度较高,其中Hard子集检测精度比YOLO5Face提升2 个百分点。
Small-Scale Face Detection Method Based on YOLO5Face Redistribution
Aiming at the problem of low accuracy of small-scale face detection in complex scenes,a small-scale face detection method is proposed to improve YOLO5Face.Based on YOLO5Face,the method introduces improved CBAM attention in the shallow layer of the network and computationally redistributes the model to improve the accura-cy of small-scale face detection in complex scenes while reducing the number of model parameters;The data enhance-ment method of fusion mixup was adopted to fully train the small-scale face detection branch of the model;Softmax loss was used as the classification loss according to the face detection characteristics to Maximize the difference of fea-tures between classes.The experimental results on each subset of WiderFace show that the improved model meets the real-time performance and has higher accuracy of small-scale face detection compared with the mainstream face de-tection methods,in which the detection accuracy of Hard subset is improved by 2 percentage points compared with YOLO5Face.

Face detectionSmall-scaleComputation redistributionClassification loss

惠康华、刘畅

展开 >

中国民航大学计算机科学与技术学院,天津 300300

人脸检测 小尺度 计算重分布 分类损失

国家重点研发计划天津市教委科研项目中央高校基本科研业务费专项

2020YFB16001012020KJ0243122020052

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 27