首页|改进U-Net网络的多视觉图像特征张量分割仿真

改进U-Net网络的多视觉图像特征张量分割仿真

扫码查看
针对图像分割计算量大、噪声因素影响等问题,提出改进U-Net网络的多视觉特征图像分割方法。对同一窗口中的灰度值排序,计算像素点极大值与极小值,根据角度与像素点的关系,检测噪声点,将被污染的噪声点放入集合中,使用其它像素点替换该点,完成滤波;分别从颜色、纹理与形状三个方面提取图像的多视觉特征,为图像分割提供参考依据;利用编码器、解码器和跳跃连接层建立U-Net网络,将提取的特征作为网络输入,新增深度残差模块,经过残差学习,实现特征映射;引入注意力模块,减少特征维度,确定张量权重,利用池化层拼接特征维度,输出最终分割特征张量。实验结果表明,所提方法对于分割目标的敏感度较高,不容易出现过分割与欠分割现象。
Simulation of Multi Vision Image Feature Tensor Segmentation Based on Improved U-Net Network
This paper put forward a method of segmenting multi-vision image features based on improved U-Net network.At first,we sorted the gray values in the same window,and then calculated the maximum and minimum val-ues of a pixel point.According to the relationship between angle and pixel,we detected noise points and put the con-taminated noise points into a set.Moreover,we replaced the point with other pixel points,thus completing the filtering.Furthermore,we extracted multi-vision features of the image from color,texture and shape,and thus providing a refer-ence basis for image segmentation.Meanwhile,we constructed a U-Net network including encoder,decoder and jump connection layer.After that,we used the extracted features as network input,and added a deep residual module to the U-Net network.After residual learning,the feature mapping was achieved.In addition,we introduced the attention module to reduce the feature dimension,thus determining the tensor weight.Finally,we used spliced feature dimen-sions by pooling layer,thus outputting the segmented feature tensor.Experimental results show that the proposed method is sensitive to the segmentation of the target and is not prone to over-segmentation and under-segmentation.

Improve U-net networkMultiple visual featuresImage segmentationDepth residual moduleAtten-tion module

刘慧慧、裴庆庆

展开 >

郑州工业应用技术学院信息工程学院,河南 郑州 451150

郑州轻工业大学计算机与通信工程学院,河南 郑州 450000

多视觉特征 图像分割 深度残差模块 注意力模块

省科技研发计划联合基金

222103810044

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 15