首页|基于GAT-Transformer时间序列模型的SOWQP

基于GAT-Transformer时间序列模型的SOWQP

扫码查看
水质污染现象日趋严重,水质预测对于水质的保护尤为重要。然而水质受到多种水质指标的影响,并且水质监测数据是一种时序数据,各种指标间存在着复杂关系,现有的方法并不能充分捕捉水中各指标间的复杂关系。针对当前水质时序数据预测长距离依赖和多种指标间关系考虑不充分的问题,提出一种基于GAT-Transformer的水质预测方法。首先引入卷积神经网络(CNN)提取每个水质时间序列数据输入的高级特征;然后将CNN输出的数据输入GAT层和多头自注意力层,通过GAT捕捉水中各元素间的复杂关系;最后将GAT层和多头自注意力层的输出结合,通过Transformer进行预测输出。使用内蒙古某真实水质数据集进行实验,表明所提方法在MAE、MSE和RMSE三个指标上的综合表现优于其它方法。
Research on Water Quality Prediction Based on Gat-Transformer Time Series Model
The phenomenon of water pollution is becoming increasingly serious,and water quality prediction is particularly important for water quality protection.However,water quality is influenced by multiple water quality indi-cators,and water quality monitoring data is a temporal data with complex relationships between various indicators.Ex-isting methods cannot fully capture the complex relationships between various indicators in water.A water quality pre-diction method based on gat transformer is proposed to solve the problems of long-distance dependence of current wa-ter quality time series data prediction and insufficient consideration of the relationship between various indicators.First,convolutional neural network(CNN)was introduced to extract the advanced features of each water quality time series data input;Then the data output from CNN was input into the gat layer and the multi head attention layer,and capture the complex relationships among the elements in the water through the gat;Finally,the output of GAT layer and multi head attention layer were combined to predict the output through transformer.In this study,a real water quality data set in Inner Mongolia was used for experiments,which shows that the comprehensive performance of this method in Mae,MSE and RMSE,is better than other methods.

Graph attentionResearch on water quality prediction(SOWQP)Multi-Head Attention

王永生、陈振、刘利民、刘广文

展开 >

内蒙古工业大学数据科学与应用学院,内蒙古 呼和浩特 010080

内蒙古自治区基于大数据的软件服务工程技术研究中心,内蒙古 呼和浩特 010080

图注意力 水质预测 多头自注意力

内蒙古科技应用计划内蒙古自治区高等学校科研项目内蒙古自治区自然科学基金内蒙古水利发展基金内蒙古自治区自然科学基金内蒙古自治区科技重大专项

2020GG0094NJZY213212021LHMS06001NSK2021092019MS030142019ZD016

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 20