首页|基于DBSCAN的三维点云缺失数据分类系数优化仿真

基于DBSCAN的三维点云缺失数据分类系数优化仿真

扫码查看
针对三维点云数据质量不理想造成的分类困难问题,提出基于DBSCAN算法的三维点云数据分类优化方法.预处理三维点云数据,填补缺失数据,保证数据完整性.通过直通滤波法剔除远离三维点云主体的无效点,采用K-D tree和KNN算法改进统计滤波,滤除三维点云数据中的离群点,优化原始三维点云数据质量.引入天牛群优化算法改进DBSCAN算法,利用天牛群优化算法选取DBSCAN算法的邻域搜索半径和搜索邻域中包含的最小对象数两个参数,将优化后三维点云数据输入改进的DBSCAN算法中,实现三维点云数据分类.实验结果表明,所提方法C-H系数和轮廓系数更大、D-B系数更小.
Optimization and Simulation of Missing Data Classification Coefficients for 3D Point Cloud Based on DBSCAN
At present,low quality of 3D point cloud data may cause classification difficulty.Therefore,this article presented a method of optimizing 3D point cloud data classification based on DBSCAN algorithm.First,we prepro-cessed the 3D point cloud data and filled in the missing data,thus ensuring data integrity.Then,we eliminated invalid points far from the main body of the 3D point cloud by the passthrough filtering method.Meanwhile,we adopted the K-D tree and KNN algorithm to improve the statistical filtering and filter the outliers in 3D point cloud data,thus opti-mizing the quality of original 3D point cloud data.Moreover,we used a beetle swarm optimization algorithm to improve the DBSCAN algorithm and select two parameters,namely the neighborhood search radius of the DBSCAN algorithm and the minimum number of objects contained in the search neighborhood.Finally,we input the optimized 3D point cloud data into the improved DBSCAN algorithm,thus achieving the 3D point cloud data classification.Experimental results show that the C-H coefficient and profile coefficient of the proposed method are larger and the D-B coefficient is smaller.

DBSCAN algorithm3D point cloud dataData classificationData preprocessingBeetle Swarm Opti-mization Algorithm,BSO

陈航、何可人、蒋利炜

展开 >

常州大学微电子与控制工程学院,江苏 常州 213164

三维点云数据 数据分类 数据预处理 天牛群优化算法

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 15