首页|室外动态车标图像关键特征边缘识别仿真

室外动态车标图像关键特征边缘识别仿真

扫码查看
由于室外环境光照条件复杂,当车辆在行驶时,车标图像会产生运动模糊,导致边缘位置模糊,从而影响边缘的准确识别.为了有效解决上述问题,提出一种室外动态车标图像关键特征边缘精准识别方法.通过先验知识对室外动态车标粗定位,采用背景纹理去除方法获取精定位图像.结合RGB颜色空间类别,计算室外动态视频图像矢量距离和平均矢量,获取图像线性函数,并统计其类别.分析动态车标图像决策规则,展开室外动态车标图像的分割和决策分类,采用图像局部离散系数,得到离散矩阵.计算室外车标图像的动态阈值以及灰度值,将车标图像边缘关键特征归一化处理,实现车标图像关键特征边缘精准识别.实验结果表明,所提方法可以有效提升车标定位结果的准确性,且车标图像关键特征边缘的平均识别率在 90%以上,同时可以有效减少识别时间.
Edge Recognition Simulation of Key Features of Outdoor Dynamic Logo Image
Due to the complex lighting conditions in the outdoor environment,when the vehicle is running,motion blur will be produced in vehicle-logo images,resulting in blurred edge positioning,and affecting accurate edge recog-nition.To effectively address this issue,this paper presented a precise edge recognition method for key features of dy-namic vehicle-logo images in the outdoor environment.Firstly,we used prior knowledge to roughly locate dynamic ve-hicle logos,and used the background texture removal method to obtain precise localization images.According to RGB color space categories,we calculated the vector distance and average vector of outdoor dynamic images,thus obtaining the linear function.After calculating the categories,we analyzed the decision rules of dynamic vehicle-logo image,and carried out the segmentation and decision classification of outdoor dynamic vehicle-logo images.Moreover,we used local discrete coefficients to obtain a discrete matrix.Furthermore,we calculated the dynamic threshold and grayscale value of the vehicle-logo images.Finally,we normalized the key features of vehicle-logo image edges,thus achieving accurate recognition of the key features.Experimental results show that the proposed method can effectively improve the accuracy of vehicle-logo location,and the average recognition rate of key feature edges in vehicle-logo images is more than 90%,while effectively reducing recognition time.

Dynamic vehicle-logo imageKey featureAccurate edge recognitionNormalization

刘强、刘志国

展开 >

清华大学,北京 100091

动态车标图像 关键特征 边缘精准识别 归一化处理

国家级课题工信部重大专项

20191660291

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(3)
  • 15