首页|基于ELM和误差校正的风力发电区间预测方法

基于ELM和误差校正的风力发电区间预测方法

扫码查看
风力发电过程中具有不稳定性和随机性,传统的点预测获得的结果准确性欠佳且无法获得预测值的区间波动范围。提出了一种基于极限学习机(ELM)和误差校正的风力发电区间预测方法。首先,使用皮尔逊相关系数挖掘出数据集中重要特征;然后,建立ELM网络生成预测值,将生成的预测值与原始的风力发电功率值作对比得到风力发电功率的误差;再将误差和原始的数据结合成新的数据集输入到已经训练好的ELM网络模型中,得到校正过后的误差;最后,通过所提出的区间构造方法得到风电功率预测区间。仿真结果表明,校正过后的误差比原始误差小,构造出的区间具有较高的可靠性和较窄的区间带宽,能更准确地描述风力发电出力范围。
Wind Power Generation Interval Prediction Method Based on ELM and Error Correction
The process of wind power generation has instability and randomness,and traditional point prediction results have poor accuracy and cannot obtain the range of fluctuation of predicted values.This paper proposes an in-terval forecasting method for wind power generation based on extreme learning machine(ELM)and error correction.First,we used the Pearson correlation coefficient to excavate important features in the data set;then,established an ELM network to generate predicted values,and compared the generated predicted values with the original wind power value to obtain the error of wind power.Then the data were combined into a new data set and input into the trained ELM network model to obtain the corrected error.Finally,the wind power prediction interval was obtained by the pro-posed interval construction method.The experimental simulation shows that the corrected error is smaller than the o-riginal error,and the constructed interval has higher reliability and narrower interval bandwidth,which can describe the output range of wind power generation more accurately.

Wind powerFeature miningPrediction intervalExtreme learning machineError correction

胡子延、温蜜、魏敏捷

展开 >

上海电力大学计算机科学与技术学院,上海 200090

上海电力大学电气工程学院,上海 200090

风力发电 特征挖掘 预测区间 极限学习机 误差校正

国家自然科学基金国家自然科学基金上海市学术带头人项目上海市科委项目

61872230U193621321XD142150020020500600

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(4)
  • 18