首页|基于AdaBoost算法的新能源汽车电机异常故障检测

基于AdaBoost算法的新能源汽车电机异常故障检测

扫码查看
新能源汽车的电机系统包含许多复杂的部件和子系统,部件之间的相互作用使得异常故障的检测变得复杂,而电机异常故障检测主要采用人工检测方式,即通过耳朵听声音,用眼睛观察,用手触摸找出故障位置,导致故障检测精度较低。因此,提出AdaBoost算法下新能源汽车电机异常故障检测方法。通过传感器采集电机信号,采用距离相似度、模糊隶属度函数提取信号特征,借助遗传算法的编码操作、交叉操作及其变异操作获取关键信号特征,运用自适应增强(Adaptive Boosting,AdaBoost)算法将信号特征分成正常信号和异常故障,以此实现对新能源汽车电机异常故障检测。实验结果表明,所提算法电机异常故障检测精度高,且耗时短。
Abnormal Fault Detection of New Energy Vehicle Motor Based on AdaBoost Algorithm
The motor system of new energy vehicles contains many complex components and subsystems.The in-teraction between these components makes the detection of abnormal faults complex.At present,the detection of motor abnormal faults mainly adopts manual detection methods,so the detection accuracy is relatively low.This paper pres-ented a method of detecting abnormal faults of new energy vehicle motors based on AdaBoost algorithm.Firstly,we collected motor signals through sensors.Then,we extracted signal features by distance similarity and fuzzy membership functions.Meanwhile,we used encoding operation,crossover operation,and mutation operation of the ge-netic algorithm to obtain key signal features.Finally,we used the Adaptive Boosting(AdaBoost)algorithm to divide signal features into normal signals and abnormal faults.Thus,we realized the detection of abnormal faults in new ener-gy vehicle motors.Experimental results prove that the proposed algorithm has high accuracy in detecting motor abnor-mal faults and takes less time.

AdaBoost algorithmWeak classifierStrong classifierGenetic algorithmNew energy vehiclesMotor abnormal fault detection

倪龙飞、白倩、张治斌

展开 >

黄河交通学院智能工程学院,河南 焦作 454950

河南理工大学,河南 焦作 454950

弱分类器 强分类器 遗传算法 新能源汽车 电机异常故障检测

河南省科技攻关计划河南省工程技术研究中心项目

232102241028266

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(4)
  • 15