首页|基于多尺度双注意力网络的植物病虫害识别

基于多尺度双注意力网络的植物病虫害识别

扫码查看
植物病虫害问题是农业上的重大难题,准确识别植物病虫害是农业病虫害预防和治理的关键步骤。经验丰富的植物病理专家通过观察叶片状态来进行诊断,不仅费时、费力,对于农民来说还需要付很大的成本来联系专家。因此,在ResNet模型的基础上设计了一种高效的多尺度双注意力模型(Multiscale Dual Attention Network)的植物病虫害识别方法。首先,通过多尺度卷积获取不同尺度的子特征图,然后,使用空间注意力和通道注意力对输入叶片重要特征进行加权处理。深度提取叶片图像中重要的全局特征和局部特征,快速准确的对植物病害进行识别。实验结果表明,在AI Challenge2018 的植物病害数据集中,MDANet获得了90。2%的准确率,与其它卷积神经网络模型相比有着明显的优势。
Plant pest and Disease Identification Based on Multiscale Dual Attention Network
Plant pest and disease problems are a major challenge in agriculture,and accurate identification of plant pests and diseases is a key step in the prevention and management of agricultural pests and diseases.Experi-enced plant pathologists make diagnoses by observing leaf states,which is not only time-consuming and labor-inten-sive,but also requires a significant cost for farmers to contact experts.Therefore,this paper designs an efficient Multi-scale Dual Attention Network(MDANet)plant pest identification method based on the ResNet model.First,sub-fea-ture maps at different scales were obtained by multiscale convolution,and then,the important features of input leaves were weighted using spatial attention and channel attention.The important global features and local features in the leaf images are extracted in depth for fast and accurate plant disease recognition.The experimental results show that MDA-Net obtained 90.2%accuracy in the plant disease dataset of AI Challenge 2018,which has a significant advantage o-ver other convolutional neural network models.

Plant disease identificationMultiscale attention mechanismConvolutional neural networks

常开心、侯彦东、陈政权、李泉龙

展开 >

河南大学人工智能学院,河南 郑州 450000

河南大学计算机与信息工程学院,河南 开封 475000

病虫害识别 多尺度注意力机制 卷积神经网络

河南大学研究生培养创新与质量提升行动计划

SYLYC2022081

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(4)
  • 13