首页|激光通信网络空间恶意节点识别方法

激光通信网络空间恶意节点识别方法

扫码查看
为了增强网络传输数据的安全性和稳定性,提出了一种激光通信网络空间恶意节点识别方法。在解析节点通信方式的基础上,明确节点平均包转发延时、转发率和丢包率的属性矢量。然后利用函数极值计算节点隶属度,提取恶意节点入侵特征。结合历史恶意入侵数据,运用二维熵识别不同类别的恶意节点,筛选出恶意节点的差异特征并获得恶意节点识别结构。利用识别分数获得恶意节点空间特征向量,对所有差异特征的二维熵做最优解处理,明确识别临界值,进而实现对恶意节点的识别。实验表明,上述方法能够精准识别出恶意节点,保障了激光通信网络空间运行和用户隐私信息的安全。
Identification Method of Malicious Nodes in Laser Communication Network Space
In order to enhance the security and stability of network transmission data,this paper presented a meth-od to identify malicious nodes in laser communication network.Based on the analysis of the communication mode of the node,the attribute vectors of average packet forwarding delay,packet forwarding rate and packet loss rate were de-fined.Then,the extreme value of the function was used to calculate the node membership and thus to extract the in-trusion characteristic of the malicious node.According to the historical malicious intrusion data,two-dimensional en-tropy was used to identify different types of malicious nodes,and then the differential characteristics of malicious nodes were screened out.Meanwhile,the structure of identifying malicious nodes was obtained.After that,the spatial feature vectors of malicious nodes were obtained by recognition fraction.Moreover,the two-dimensional entropy of all differential features was optimized to determine the critical value.Finally,we completed the recognition of malicious nodes.Experiment results show that this method identifies malicious nodes accurately,and ensures the operation of la-ser communication network and the safety of user privacy information.

Laser communication networkCyberspaceMalicious node identificationSpatial feature vectorMembership degreeFeature extraction

史明、陈俊杰、邓越萍、王金策

展开 >

山西能源学院计算机与信息工程系,山西 太原 030600

太原理工大学信息与计算机学院,山西 太原 030600

激光通信网络 赛伯空间 恶意节点识别 空间特征向量 隶属度 特征提取

山西省教学改革创新项目(2021)山西省大学生创新创业训练计划(2021)

NJ202181220211103

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(4)
  • 15