首页|基于顶部标签的RFID室内定位优化算法研究

基于顶部标签的RFID室内定位优化算法研究

扫码查看
RFID室内定位技术有信号穿透性强,成本低廉等诸多优点,但其识别距离有限且定位精度不佳。提出一种采用顶部标签布置的RFID识别方法和双重指纹匹配的搜索算法,并进行了相应的实验验证,实验过程表明利用RFID识别范围形成的区域将实验空间进行划分提高了K近邻系列算法的匹配精度。文中采用KNN(K-Nearest Neighbor)、WKNN(Weight K-Nearest Neighbor)和BWKNN(Bayes Weight K-Nearest Neighbor)三种不同的算法分析了相同RFID目标的定位性能。实验结果显示,BWKNN算法能够有效的提升RFID指纹算法定位精度:BWKNN算法的平均定位精度为 31。24mm,相较于KNN算法提升 64。55%;相较于WKNN算法提升50。03%。
Research on RFID Indoor Location Optimization Algorithm Based on Top Tag
RFID indoor positioning technology has many advantages such as strong signal penetration and low cost,but its recognition distance is limited and its positioning accuracy is poor.This paper proposes a RFID identifica-tion method used top tag arrangement and a search algorithm for double fingerprint matching,and conducted corre-sponding experimental validation.The experimental process shows that using the RFID identification range to form a region to divide the experimental space improves the matching accuracy of the K-nearest neighbor series algorithm.Three different algorithms,KNN(K-Nearest Neighbor),WKNN(Weight K-Nearest Neighbor)and BWKNN(Bayes Weight K-Nearest Neighbor),were used in the paper to analyze the localization performance of the same RFID target.The experimental results show that the BWKNN algorithm can effectively improve the localization accuracy of RFID fingerprint algorithm:the average localization accuracy of BWKNN algorithm is 31.24mm,which is 64.55%better than KNN algorithm;and 50.03%better than WKNN algorithm.

Top tagRFIDBayesian probabilistic algorithmLocation fingerprinting

张一康、陈燚涛、刘芳、宋志峰

展开 >

武汉纺织大学机械工程与自动化学院,湖北 武汉 430200

顶部标签 射频识别技术 贝叶斯概率算法 位置指纹定位

国家自然科学基金

51775388

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(4)
  • 12