计算机仿真2024,Vol.41Issue(4) :436-440.

改进BP神经网络的混凝土构件承载力预测仿真

Improved BP Neural Network for Predicting the Bearing Capacity of Concrete Components

夏运生 白鑫 马三蕊
计算机仿真2024,Vol.41Issue(4) :436-440.

改进BP神经网络的混凝土构件承载力预测仿真

Improved BP Neural Network for Predicting the Bearing Capacity of Concrete Components

夏运生 1白鑫 2马三蕊1
扫码查看

作者信息

  • 1. 黄河交通学院,河南 焦作 454950
  • 2. 宁波大学,浙江 宁波 563000
  • 折叠

摘要

受到多种因素的影响,大直径混凝土受弯构件在使用期间其承载力将发生变化,为此提出大直径混凝土受弯构件承载力预测方法.确定影响大直径混凝土受弯构件承载力的五大因素,将影响因素作为输入建立用于大直径混凝土受弯构件承载力预测的BP神经网络模型,通过模拟退火-粒子群混合算法优化BP神经网络模型参数,并使用优化后BP神经网络模型完成大直径混凝土受弯构件承载力预测.实验结果表明,所提方法的大直径混凝土受弯构件承载力预测精度和效率更高,整体应用效果更好.

Abstract

Due to various factors,the bearing capacity of large-diameter concrete flexural members will change during use.To address this issue,this article put forward a method for predicting the bearing capacity of large-diame-ter concrete flexural member.Firstly,five major factors affecting the bearing capacity of large-diameter concrete flex-ural member were identified.Then,these factors were served as inputs to construct a BP neural network model for pre-dicting the bearing capacity of large-diameter concrete flexural members.Finally,the parameters of the BP neural network model were optimized by the simulated annealing-particle swarm algorithm,and then the optimized model was used to complete the prediction of the bearing capacity of large-diameter concrete flexural members.The experimental results show that the proposed method has higher prediction accuracy and efficiency for the bearing capacity of large-diameter concrete flexural member and better overall application effect.

关键词

大直径混凝土/承载力预测/受弯构件/神经网络模型/模拟退火-粒子群混合优化算法

Key words

Large diameter concrete/Prediction of bearing capacity/Flexural member/BP neural network mod-el/Simulated annealing-particle swarm optimization algorithm

引用本文复制引用

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
参考文献量15
段落导航相关论文