首页|改进BP神经网络的混凝土构件承载力预测仿真

改进BP神经网络的混凝土构件承载力预测仿真

扫码查看
受到多种因素的影响,大直径混凝土受弯构件在使用期间其承载力将发生变化,为此提出大直径混凝土受弯构件承载力预测方法.确定影响大直径混凝土受弯构件承载力的五大因素,将影响因素作为输入建立用于大直径混凝土受弯构件承载力预测的BP神经网络模型,通过模拟退火-粒子群混合算法优化BP神经网络模型参数,并使用优化后BP神经网络模型完成大直径混凝土受弯构件承载力预测.实验结果表明,所提方法的大直径混凝土受弯构件承载力预测精度和效率更高,整体应用效果更好.
Improved BP Neural Network for Predicting the Bearing Capacity of Concrete Components
Due to various factors,the bearing capacity of large-diameter concrete flexural members will change during use.To address this issue,this article put forward a method for predicting the bearing capacity of large-diame-ter concrete flexural member.Firstly,five major factors affecting the bearing capacity of large-diameter concrete flex-ural member were identified.Then,these factors were served as inputs to construct a BP neural network model for pre-dicting the bearing capacity of large-diameter concrete flexural members.Finally,the parameters of the BP neural network model were optimized by the simulated annealing-particle swarm algorithm,and then the optimized model was used to complete the prediction of the bearing capacity of large-diameter concrete flexural members.The experimental results show that the proposed method has higher prediction accuracy and efficiency for the bearing capacity of large-diameter concrete flexural member and better overall application effect.

Large diameter concretePrediction of bearing capacityFlexural memberBP neural network mod-elSimulated annealing-particle swarm optimization algorithm

夏运生、白鑫、马三蕊

展开 >

黄河交通学院,河南 焦作 454950

宁波大学,浙江 宁波 563000

大直径混凝土 承载力预测 受弯构件 神经网络模型 模拟退火-粒子群混合优化算法

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(4)
  • 15