首页|基于改进融合蚁群算法的AGV路径规划

基于改进融合蚁群算法的AGV路径规划

扫码查看
针对传统蚁群算法在AGV 寻路时存在收敛速度慢、转角次数多且不够平滑等问题,在蚁群系统算法(Ant Colony System,ACS)的基础上,提出一种改进融合蚁群算法.首先通过势场引力函数来改进蚁群系统的启发函数;其次,采用一种改进自适应伪随机转移策略,在信息素更新中引入自适应挥发因子;然后,采用三次B样条曲线平滑策略进行优化;最后,在栅格地图中进行仿真,结果表明,改进算法达到缩短路径长度和减少转角次数的目的,同时提高算法的收敛性和路径平滑性,相较于传统蚁群算法能明显提升寻路效率.
AGV Path Planning Based on Improved Fusion Ant Colony Algorithm
Aiming at the problems of the traditional Ant Colony algorithm in AGV pathfinding,such as slow con-vergence speed,too many corners and not smooth enough,this paper proposes an improved fusion Ant Colony algorithm based on Ant Colony System(ACS)algorithm.Firstly,the heuristic function of ant colony system was im-proved by the potential field target attraction function.Secondly,an improved adaptive pseudo-random transfer strategy was used to introduce adaptive volatile factors into pheromone update.Then,a cubic B-spline curve smoot-hing strategy was used for optimization.Finally,the simulation experiment was carried out in raster map.The experi-mental results show that the improved algorithm can shorten the path length and reduce the number of corners,and improve the convergence and path smoothness of the algorithm.Compared with the traditional ant colony algorithm,it can significantly improve the pathfinding efficiency.

Ant colony algorithmPath planningArtificial potential field method

周振、耿晨晨、崔若庚、肖金壮

展开 >

河北大学电子信息工程学院,河北 保定 071000

蚁群算法 路径规划 人工势场法

国家自然科学基金河北省自然科学基金河北省高等学校科学技术研究项目

62103127F2020201048521000981366

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(4)
  • 19