首页|轻量型密集行人检测算法研究

轻量型密集行人检测算法研究

扫码查看
针对当前密集行人检测任务中小尺寸目标多且密度大、检测精度低,参数量大且不便于部署的问题,基于YOLOv5 算法提出一种改进的轻量级密集行人检测算法YOLO-GB.引入Ghost模块,形成轻量级主干网络,减少参数量和计算量,低成本提取图像特征.针对目标尺度变化大的问题,增加一个预测头来检测不同尺度目标,同时引入加权双向特征金字塔网络BiFPN增强特征融合,提升多尺度特征检测精度.最后使用Alpha-IoU替换CIoU作为边框回归损失函数,进一步优化检测精度.采用密集场景人体检测数据集CrowdHuman进行实验,结果表明,YOLO-GB的mAP 50 达到84.8%,相比YOLOv5s提高 1.5%,参数量降低 41.2%,模型大小降低39.6%,具有良好的检测精度与实时性.
Research on Lightweight Dense Pedestrian Detection Algorithm
For the current problem of dense pedestrian detection tasks with many small size targets and high den-sity,low detection accuracy,a large number of parameters,and not easy to deploy,this paper proposes an improved lightweight dense pedestrian detection algorithm YOLO-GB based on the YOLOv5 algorithm.The Ghost module is in-troduced to form a lightweight backbone network,reduce the number of parameters and calculations,and extract image features at low cost.For the problem of a large variety of target scales,a prediction head is added to detect targets of different scales.A weighted bidirectional feature pyramid network BiFPN is introduced to enhance feature fusion and improve the multi-scale feature detection accuracy.Finally,we use Alpha-IoU to replace CIoU as the border regres-sion loss function to further optimize the detection accuracy.Experiments are conducted using the dense scene human detection dataset CrowdHuman,and the results show that the mAP50 of YOLO-GB reaches 84.8%,which is 1.5%higher than YOLOv5s,41.2%lower number of parameters,and 39.6%lower model size,with good detection accuracy and real-time performance.

Target detectionPedestrian detectionLightweightFeature pyramid network

黄俊杰、胡畅、包嘉琪、常青

展开 >

武汉纺织大学计算机与人工智能学院,湖北 武汉 430200

目标检测 行人检测 轻量化 图像金字塔

国家自然科学基金青年科学基金

12001406

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)
  • 2