首页|面向3D打印模型的局部轮廓信息智能获取仿真

面向3D打印模型的局部轮廓信息智能获取仿真

扫码查看
图像轮廓提取技术的重点是图像边缘检测技术,但由于缺少目标数据,传统轮廓提取算法在应用时具有较大的局限性.为解决在3D打印模型图像轮廓提取模型精确度差,提取轮廓完整度低的问题,提出一种图像轮廓线优化结合轮廓特征增强算法.首先通过笛卡尔坐标系规划,优化图像轮廓线,接着采用引导滤波算法,增强图像轮廓特征;然后基于CLAHE技术与高斯滤波技术处理优化后的图像信息,加速模型构建速度;最后基于图像的HOG特征,构建图像局部轮廓信息智能获取模型(HOG-CFE模型).仿真结果表明,经图像轮廓增强处理后构建的HOG-CFE模型,有效的提高了模型轮廓提取的完整度,增强了模型的精确度.较其它基线算法相比,HOG-CFE模型的面积比指标平均提高了 2.33%,准确率整体提高了6.01%与 5.42%.本文构建的HOG-CFE局部轮廓信息智能获取模型通过轮廓增强技术有效的提高了轮廓提取完整度与模型准确率.
Simulation of Intelligent Acquisition of Local Contour Information for 3D Printing Model
Image edge detection technology is the focus of image contour extraction technology,but due to the lack of target data,the traditional contour extraction algorithm has great limitations in application.In order to solve the problem of poor accuracy and low integrity of contour extraction in 3D printing model images,this paper proposes an image contour optimization combined with contour feature enhancement algorithm.Firstly,the image contour was opti-mized by Cartesian coordinate system planning,and then the image contour features were enhanced by using the guided filtering algorithm.Secondly,the optimized image information was processed based on CLAHE technology and Gaussian filtering technology to accelerate the model construction speed.Finally,the intelligent acquisition model of image local contour information(HOG-CFE model)was constructed based on the HOG features of the image.The simulation results show that the HOG-CFE model constructed by image contour enhancement processing effectively improves the integrity of model contour extraction and enhances the accuracy of the model.Compared with other base-line algorithms,the area ratio index of the HOG-CFE model is improved by 2.33%on average,and the overall accu-racy is improved by 6.01%and 5.42%.In this paper,the intelligent acquisition model of HOG-CFE local contour in-formation effectively improves the integrity of contour extraction and the accuracy of the model through contour en-hancement technology.

Contour enhancementImage processing3D printing model

杜秋磊、刘雨晴

展开 >

长春大学,吉林 长春 130022

轮廓增强 图像处理 三维打印模型

吉林省教育厅科学技术研究项目

JJKH20230666KJ

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)