首页|基于贝叶斯学习的数字化图像多阈值分割方法

基于贝叶斯学习的数字化图像多阈值分割方法

扫码查看
经典Otsu分割算法精度高,适应度强,但由于其分割稳定度较差,计算效率较低,在实际使用时具有一定的应用局限。为提升Otsu图像分割的稳定度与计算效率,提出一种基于贝叶斯网络结构学习算法对搜索节点进行优化,提高整体计算效率。首先通过在BN层通过独立性测试,构架初始种群BN_0,并利用GR算法不断修正进化方向;然后构建MSWT树网解决种群扩张时多父节点导致算法收敛速度低的问题;接着采用ACO算法规划个体转移禁忌表,通过结合个体转移概率,完成最优阈值规划;最后构建OEA-Otsu数字图像多阈值分割模型,通过解析适应函数进行并利用最优Gbest结构规划完成图像多阈值分割输出。仿真结果表明,较其它基线优化算法相比,经OEA优化后的图像多阈值分割模型,FSIM指标整体提高了5。91%,SSIM指标至少提升了 2。33%,PSNR指标分析在实验数据上分别增加了 12。76%、10。74%以及 12。48%。即提出的OEA-Otsu模型有效的提高了图像分割的稳定度差与计算效率。
Digital Image Multi-threshold Segmentation Method Based on Bayesian Learning
The classical Otsu segmentation algorithm has high accuracy and strong fitness,but it has certain appli-cation limitations in practical use because of its poor segmentation stability and low computational efficiency.In order to improve the stability and computational efficiency of Otsu image segmentation,this paper proposes a Bayesian net-work structure learning algorithm to optimize the search nodes and improve the overall computational efficiency.First-ly,through the independence test in the BN layer,the initial population BN_0 was constructed,and the GR algorithm was used to continuously modify the evolutionary direction;then the MSWT tree network was constructed to solve the problem of low convergence rate caused by multiple father nodes when the population expands;then the ACO algo-rithm was used to plan the individual transition tabu list,and the optimal threshold planning was completed by combi-ning the individual transition probability;finally an OEA-Otsu digital image multi-threshold segmentation model was constructed,and the image multi-threshold segmentation was carried out by analyzing the fitness function and using the optimal Gbest structure planning.The simulation results show that compared with other baseline optimization algo-rithms,the FSIM index of the image multi-threshold segmentation model optimized by OEA is improved by 5.91%,the SSIM index is improved by at least 2.33%,and the PSNR index analysis is increased by 12.76%,10.74%and 12.48%respectively in the experimental data.That is to say,the proposed OEA-Otsu model effectively improves the stability and computational efficiency of image segmentation.

Bayesian learningImage multi-threshold segmentationAlgorithm

何宇新、陈勇、王友元

展开 >

南方电网数字企业科技(广东)有限公司,广东 广州 510663

中南大学数学与统计学院,湖南 长沙 410083

贝叶斯学习 图像多阈值分割 算法

南网数研院人力资源管理人才数字化建设项目

0002200000085847

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)
  • 7