首页|时空数据影响下耕地空间布局优化模型仿真

时空数据影响下耕地空间布局优化模型仿真

扫码查看
由于耕地空间布局不仅需要考虑土地质量和生产潜力,还需要综合考虑环境保护、水文特征等因素影响,增加了空间布局规划的复杂性。为此,提出一种时空数据随机性影响下耕地空间布局规划方法。根据栅格空间数据和线性加权方法构建耕地布局规划模型,通过耕地质量自相关性计算耕地各指标数值,结合最优组合赋权法确定评价体系权重,利用增量自相关分析,归一化处理耕地指标数值,基于物元矩阵计算耕地地质环境的经典域与节域,获取耕地地质环境评价的综合关联程度,实现耕地空间布局规划。实验结果表明,所提方法时空数据随机性特征识别能力更强,耕地分类精度为 94%,耕地空间布局规划效果好,空间集约性高,较小的耕地区域占地面积的NNI指数高达 0。634。
Simulation of Optimization Model of Cultivated Land Spatial Layout under Influence of Spatiotemporal Data
Due to the fact that the spatial layout of cultivated land not only needs to consider land quality and pro-duction potential,but also needs to comprehensively consider factors such as environmental protection and hydrological characteristics,it increases the complexity of spatial layout planning.As a result,this paper proposed a method for planning the spatial layout of cultivated land under the influence of randomicity of spatiotemporal data.Firstly,we constructed a layout planning model by using raster spatial data and linear weighting method.Then,we cal-culated the values of various indicators of cultivated land through the autocorrelation of cultivated land quality,and de-termined the weight of the evaluation system by combining the optimal combination weighting approach.Next,we used incremental autocorrelation analysis to normalize the cultivated land indicators.Based on the matter element matrix,we calculated the classical domain and segment domain of the geological environment of cultivated land,thus obtaining the comprehensive correlation degree of the geological environment evaluation.Finally,we completed the spatial layout planning of cultivated land.The experimental results show that the proposed method has stronger identification ability for the randomness characteristics of spatiotemporal data,as well as 94%classification accuracy of cultivated land.In addition,the effect of spatial layout planning is good,and the spatial intensive nature is high.The NNI index of smal-ler cultivated land area is as high as 0.634.

Spatiotemporal data modelLinear weighting methodAutocorrelation analysisMatter element matrixComprehensive correlation degree

杨锋、王秀丽、周雨石、高松峰

展开 >

河南城建学院测绘与城市空间信息学院,河南 平顶山 467036

河南农业大学资源与环境学院,河南 郑州 450002

时空数据模型 线性加权方式 自相关性分析法 物元矩阵 综合关联程度

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)