首页|稀疏表示下大场景视频图像运动目标跟踪仿真

稀疏表示下大场景视频图像运动目标跟踪仿真

扫码查看
大场景视频中存在复杂的背景信息,这些背景信息与目标的外观相似,导致难以准确跟踪目标。为了解决这一问题,提出基于稀疏表示的大场景视频图像运动目标跟踪方法。通过提取视频图像haar-like特征并对特征投影压缩,在字典中融入背景信息,构造超完备字典。改进传统粒子滤波,提出基于残差的Unscented粒子滤波算法,在传统稀疏表示中添加判别函数生成判别稀疏表示,利用L1 范数最小化求解候选目标稀疏系数,在字典不断更新下通过基于残差的Unscented粒子滤波算法,实现大场景视频图像运动目标跟踪。实验结果表明,所提方法目标跟踪精度和重合度均在 0。9 以上,且跟踪平均时间短。
Sparse representation of large scene video image motion object tracking simulation
In large scene videos,there is a large amount of complex background information,which is similar to the appearance of the target,so it is difficult to accurately track the target.To solve this problem,this article put for-ward a method for tracking motion targets in large scene video images based on sparse representation.Firstly,Haar-like features were extracted from video images and compressed.Secondly,background information was incorporated in-to the dictionary to construct an over-complete dictionary.Then,the traditional particle filter was improved.Mean-while,an Unscented particle filter algorithm was proposed based on residual error.Moreover,a discriminant function was added to the traditional sparse representation,so that a discriminant sparse representation was generated.Based on L1 norm minimization,the sparse coefficients of the candidate target were solved.Under continuous dictionary up-dates,the motion target tracking was realized through the residual-based Unscented particle filter algorithm.Experi-mental results show that the target tracking accuracy and coincidence rate are more than 0.9,and the average tracking time was short.

Sparse representationLarge scene videoMoving object trackingParticle filtering

刘洪鹏、孙永佼

展开 >

宁夏理工学院计算机科学与工程学院,宁夏 石嘴山 753000

东北大学计算机科学与工程学院,辽宁 沈阳 110819

稀疏表示 大场景视频图像 运动目标跟踪 haar-like特征 粒子滤波

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)
  • 12