首页|基于代理模型进化的高效神经网络架构搜索

基于代理模型进化的高效神经网络架构搜索

扫码查看
针对传统人工神经网络设计的时间复杂性与调试困难等问题,研究基于神经网络架构搜索的高效神经网络架构自动搜索方法,解决网络设计方案,提出了一种代理模型进化方法的高效神经网络搜索方法。上述方法将代理模型集成到遗传算法中,通过训练代理模型将预测卷积神经网络(Convolutional Neural Networks,CNN)性能问题转化为二值分类问题,加速网络评估过程。另外,在最新一代模型中,子模型通过继承父模型参数,在训练数据集上训练较少次数,加速最优网络的生成。所提方法在CIfar-10 数据集上分类精度为 95。6%,模型参数为3。4M;在Cifar-100 数据集上分类精度为 77。46%,模型参数为 4。3M。由于使用代理模型和参数共享,新方法在cirar-10 数据集上经过 2。5 天搜索获得性能优异的模型,避免了43。8%的候选CNN训练。
Efficient Neural Network Architecture Search Based on Proxy Model Evolution
Aiming at the problems of time complexity and debugging difficulties in traditional artificial neural net-work design,this paper studies an efficient neural network architecture automatic search method based on neural net-work architecture search,solves the network design scheme,and proposes an efficient neural network search method u-sing proxy model evolution method.In this method,the proxy model was integrated into the genetic algorithm,and the prediction of CNN performance was transformed into a binary classification problem,which can speed up the network evaluation process.A fitness evaluation mechanism was designed to measure the quality and diversity of candidate in-dividuals and retain those with good performance for further training.In addition,in the latest generation of parent model,the sub-model inherits the parameters of the parent model to train fewer times on the training data set and ac-celerate the generation of the optimal network.The classification accuracy of this method on Cifar-10 data set is 95.6%,and the model parameter is 3.4M.The classification accuracy of Cifar-100 data set is 77.46%,and the mod-el parameter is 4.3M.Due to the use of proxy model and parameter inheritance,the method takes only 2.5 days on the CIRAR-10 dataset and avoids 43.8%candidate individual training.

Proxy modelGenetic algorithmFitness assessmentParameter inheritance

王龙业、肖舒、曾晓莉、王圳鹏

展开 >

西南石油大学电气信息学院,四川 成都 610500

西藏大学信息科学技术学院,西藏 拉萨 850000

成都市排水有限责任公司,四川 成都 610000

代理模型 遗传算法 适应度评估 参数继承

国家自然科学基金国家自然科学基金四川省科技计划

61261021615610452019JDRC0012

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)
  • 3