计算机仿真2024,Vol.41Issue(5) :405-409.

基于改进深度神经网络的网络安全预警方法研究

Research on New Network Security Early Warning Method Based on Improved Deep Neural Network

宋吉飞 郭金雷 王蓉 孙成
计算机仿真2024,Vol.41Issue(5) :405-409.

基于改进深度神经网络的网络安全预警方法研究

Research on New Network Security Early Warning Method Based on Improved Deep Neural Network

宋吉飞 1郭金雷 2王蓉 2孙成2
扫码查看

作者信息

  • 1. 宁夏中卫市新型互联网交换中心有限责任公司,宁夏 中卫 755001
  • 2. 上海机电工程研究所,上海 201100
  • 折叠

摘要

针对如何进一步提高网络入侵检测性能,提出一种基于改进深度神经网络的网络入侵检测方法.首先,对无监督稀疏自编码器(SAE)进行L1 正则化以增强数据自动编码器的稀疏性;然后,将无监督SAE引入深度神经网络建立入侵检测网络入侵模型,采用深度神经网络完成对网络攻击入侵的预测和分类,通过分类完成对入侵攻击的特征提取.最后,为了验证模型在检测率和低误报率方面的优越性,论文分别采用了KDDCup99、NSL-KDD等数据集进行验证.结果表明与传统方法相比,新提出的方法在准确率、检测率有约 10%的提升.

Abstract

In order to further improve the performance of network intrusion detection,this paper proposes a network intrusion detection method based on improved deep neural network.First,the unsupervised sparse self-en-coder(SAE)was regularized by L1 to enhance the sparsity of the automatic data encoder;Then,the unsupervised SAE was introduced into the deep neural network to establish the intrusion detection network intrusion model.The deep neural network was used to complete the prediction and classification of network attack intrusion,and the feature extraction of intrusion attack was completed through classification.Finally,in order to verify the superiority of the model in terms of detection rate and low false positive rate,the paper used KDDCup99,NSL-KDD and other data sets for validation.The results show that compared with the traditional methods,the accuracy and detection rate of the pro-posed method are improved by about 10%.

关键词

深度神经网络/网络预警/入侵检测

Key words

Deep neural network/Network early warning/Intrusion detection

引用本文复制引用

基金项目

宁夏回族自治区产业创新重点任务揭榜公关项目(2021020301)

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
参考文献量1
段落导航相关论文