首页|基于TS-BiLSTM的电商平台评论质量分类模型

基于TS-BiLSTM的电商平台评论质量分类模型

扫码查看
评论质量分类可用于筛选出高质量的评论,广泛应用在电子商务等多个领域.高质量的评论能够有效为商家和消费者提供产品选择的判断依据.但由于电商平台用户评论具有交错性和分散性的特点,特征提取过程较为复杂,传统的评论质量分类普遍采用机器学习的方法,分类的准确率不高.针对以上问题,提出一种基于 TS-BiLSTM(TinyBERT Self-Attention BiLSTM)的电商平台评论质量分类模型.首先用TinyBERT对评论文本进行预处理,构建词向量;然后利用双向长短期记忆网络对输入的词向量进行特征提取,并使用自注意力机制对提取到的特征向量进行加权计算;最后利用全连接与Softmax对加权后的特征向量进行分类,得到分类结果.实验结果表明,所使用的模型能有效提高电商平台评论文本质量分类的准确度.
A Review Quality Classification Model Based on TS-BiLSTM Oriented E-Commerce Platform
Comment quality classification can be used to select high-quality reviews,which are widely used in e-commerce and other fields.High-quality reviews can be an effective way for businesses and consumers to make in-formed decisions about their product choices.However,due to the characteristics of interlacing and dispersing of user reviews on e-commerce platforms,the process of feature extraction is complex,and the traditional quality classification of reviews generally adopts machine learning methods,so the accuracy of classification is not high.To solve this prob-lem,this paper proposes a user review quality classification model based on TS-BiLSTM(TinyBERT Self-Attention BiLSTM)oriented e-commerce platform.Firstly,TinyBERT is used to preprocess the comment text to construct the word vector,then BILSTM is used to extract the features of the input word vector,and Self-Attention is used to calcu-late the weight of the extracted feature vector.Finally,the weighted feature vectors are classified by full connection and Softmax.The experimental results show that the proposed model can effectively improve the accuracy of text qual-ity classification for e-commerce platform reviews.

Review qualityE-commerceBiLSTMSelf-attention

高茂娇、张顺香

展开 >

安徽理工大学计算机科学与工程学院,安徽 淮南 232001

合肥综合性国家科学中心人工智能研究院,安徽 合肥 230088

评论质量 电子商务 双向长短期记忆网络 自注意力机制

国家自然科学基金面上项目安徽省高等学校协同创新项目

62076006GXXT-2021-008

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)
  • 7