首页|基于时空深度学习模型的PM2.5预测

基于时空深度学习模型的PM2.5预测

扫码查看
伴随着快速城市化进程,空气污染尤其是PM2.5严重影响着人们的身体健康,精准的空气质量预测能够为空气污染防治以及政府决策提供有力支撑.针对当前空气质量预测研究中存在的问题,包括缺失数据填充,时空特征信息提取等,提出一种基于三维卷积神经网络和长短时记忆神经网络构建的时空混合深度学习模型C3D-LSTM.模型通过三维卷积模块对时空维度上的特征信息进行联合提取,并利用长短时记忆网络学习长时间序列数据的能力,预测目标站点的PM2.5的浓度.基于北京市 22 个站点的真实数据集进行实验,结果表明,所提模型在平均绝对误差、均方误差和拟合系数三种指标方面均优于其它基准空气质量预测模型.
PM2.5 Prediction Based on Spatio-Temporal Deep Learning Model
With the rapid urbanization process,air pollution especially PM2.5 severely affects people's health.Pre-dicting air quality accurately can provide substantial support for air pollution prevention and governments'policy-making.Aiming at the problems in current air quality prediction research,including missing data imputation,spatio-temporal feature extraction,a spatiotemporal deep learning model named C3D-LSTM is proposed based on three-di-mensional convolutional neural network and long and short-time memory network,which extracts the features in the temporal and spatial dimensions using three-dimensional convolution module,learns the long-term temporal depend-ency using long and short time memory network and then predicts the PM2.5 concentration of the target station.The experiments are conducted based on the real dataset from 22 stations of Beijing city and the results show that the pro-posed model is superior over other baseline models on the metrics including mean absolute error,mean square error,and the fitting coefficient.

Air quality predictionConvolutional neural networkRecurrent neural networkDeep learning

胡克勇、公雪瑶、刘国晓、王续澎

展开 >

青岛理工大学信息与控制工程学院,山东 青岛 266520

空气质量预测 卷积神经网络 循环神经网络 深度学习

国家自然科学基金山东省自然科学基金

61902205ZR2019BD019

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(5)
  • 2