首页|城市内密集交通流行程时间预测数学建模仿真

城市内密集交通流行程时间预测数学建模仿真

扫码查看
城市交通网络包含大量的道路交叉口和车辆,且受工作日和休息日多因素的影响,使得交通流量具有不确定性,增加了预测的难度。为此,提出城市密集交通流行程时间预测数学建模研究。取样城市车辆历史数据,明确数据插值点,插值处理车辆运行数据。利用深度学习数据归一化,计算平均行程时间、行程时间方差以及可靠度指标,提取城市密集交通流特征。基于卡尔曼滤波将预测问题转化成空间状态计算问题,实现密集交通流行程时间预测。通过实验证明,所建模型能够准确预测城市密集交通流行程时间,平均绝对百分误差均在 2。3%以下,能帮助驾驶人合理规划出行。
Mathematical Modeling and Simulation of Travel Time Prediction of Dense Traffic Flow in the city
Currently,urban traffic networks contain a large number of road intersections and vehicles.Due to the influence of multiple factors such as workdays and rest days,traffic flow is uncertain,which increases the difficulty of prediction.Therefore,this article proposed a mathematical modeling study on predicting trip time in dense urban traf-fic.Firstly,we sampled historical data of urban vehicles and then identified data interpolation points to interpolate ve-hicle operation data.Secondly,we used deep learning data normalization to calculate average travel time,travel time variance,and reliability indicators,thus extracting the features of dense urban traffic flow.Finally,based on the Kal-man filter,we transformed the prediction problem into a problem about spatial state calculation,thereby achieving the prediction of trip time in dense traffic.Experiment results prove that the model can accurately predict the travel time in dense urban traffic and help drivers plan their trips reasonably.Meanwhile,the average absolute percentage error is less than 2.3%.

Urban densityTrip timeTime predictionInterpolation processing

宋娜娜、葛杨、程海涛

展开 >

重庆移通学院,重庆 401520

重庆工商大学派斯学院软件工程学院,重庆 401520

青岛理工大学,山东 青岛 266000

城市密集交通 行程时间 时间预测 插值处理

重庆市高等教育教学改革研究一般项目

193318

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(6)