首页|基于改进YOLO V5s模型的遥感图像目标检测及应用

基于改进YOLO V5s模型的遥感图像目标检测及应用

扫码查看
利用改进YOLO V5s模型实现遥感图像目标检测并用于地域贫困评估。针对现有模型提出了三点改进:加强PAN结构、基于bounding box的RIOU_Loss回归损失函数、协同注意力机制。同时将遥感图像目标作为表征,计算连续时间节点内的贫困率变化。实验结果表明,改进模型的P、R、mAP@0。5、mAP@0。5:0。95 值存在不同程度的提升,而Loss值有所下降。因此,与原模型相比,改进模型具备更精准的目标检测能力。同时,与传统的统计数据方法相比,改进模型为地域贫困评估提供了一种等效的无数据评估思路。
Application of Improved YOLO V5s Model for Regional Poverty Assessment using Remote Sensing Image Target Detection
This study aims at applying the improved YOLO V5s model for the assessment of regional poverty using remote sensing image target detection.For this purpose,three improvements were made to the model.So,a new en-hanced PAN structure was proposed.Accordingly,a new RIOU_Loss regression loss function of bounding box was pro-posed.Furthermore,a new collaborative attention mechanism was put forward.In addition,while objects in the remote sensing images were used as the representations of poverty status,the changes in the images were considered to evalu-ate the regional poverty rate in a continuous time interval.The results show that the values of P,R,mAP@0.5 and mAP@0.5:0.95 of the model are improved,while the Loss value is decreased.Therefore,compared with the original model,the improved model has more accurate object detection capabilities.Meanwhile,compared with traditional sta-tistical data methods,the improved model provides an equivalent dataless evaluation approach for regional poverty as-sessment.

Remote sensingTarget detection(TD)Simulation

张晨光、滕桂法、丁文卿

展开 >

河北农业大学信息科学与技术学院,河北 保定 071000

沧州交通学院计算机与信息技术学院,河北 沧州 061100

河北农业大学渤海校区,河北 沧州 061100

遥感 目标检测 仿真

&&河北省省属高等学校基本科研业务费研究项目河北省人力资源和社会保障厅

213102003KY2021052JRSHZ-2022-02037

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(6)