首页|基于内点法改进的直觉模糊C均值分割算法

基于内点法改进的直觉模糊C均值分割算法

扫码查看
传统的模糊C均值(Fuzzy C-Means,FCM)算法求解隶属度函数和聚类中心表达式时,未充分利用算法的约束条件,导致得到的隶属度函数未收敛到最优,降低了目标像素和邻域像素与聚类中心之间的依赖,影响了图像分割的效果。针对上述问题,采用内点法的思想设计惩罚函数,将惩罚函数引入FCM算法的目标函数中,再利用KKT条件求出全约束条件下的隶属度。然后将模糊集推广到直觉模糊集,引入非隶属度和犹豫度,进一步优化隶属度矩阵,完善图像中的不确定信息。分割实验表明,改进后的算法既增强了抗噪性,又保护了图像的细节。相比于FCM算法本文算法的分割准确率至少提高了3。11%、划分系数提高了 9。29%;对比于FCM_S2 算法,上述算法的分割准确率提高了约0。5%,划分系数提高了2。14%。
An Improved Intuitionistic Fuzzy C-Mean Segmentation Algorithm Based on Intuition-Point Method
The traditional Fuzzy C-Means(FCM)algorithm does not fully utilize the constraints of the algorithm when solving the membership function and cluster center expression,resulting in the obtained membership function not converging to the optimal value,reducing the dependence between target pixels and neighboring pixels and cluster centers,and affecting the effectiveness of image segmentation.Aiming at this problem,the penalty function was de-signed by using the idea of the inner point method,the penalty function was introduced into the objective function of the FCM algorithm,and then the KKT condition was used to find the membership under the full constraint condition.The fuzzy set was then generalized to the intuitive fuzzy set to introduce non-membership and hesitation,further opti-mizing the membership matrix and refining the uncertain information in the image.The segmentation experiments show that the improved algorithm not only enhances noise immunity,but also protects the details of the image.Conclusion:Compared with the FCM algorithm,the segmentation accuracy of this algorithm is improved by at least 3.11%,and the division coefficient is increased by 9.29%.Compared with the FCM_S2 algorithm,the segmentation accuracy of the proposed algorithm is increased by about 0.5%,and the division coefficient is increased by 2.14%.

Image segmentationInterior point methodPenalty functionIntuitionistic fuzzy set

韩朔、曹晓峰、刘兴杰、刘丽萍

展开 >

宁夏大学物理与电子电气工程学院,宁夏 银川 750021

图像分割 内点法 惩罚函数 直觉模糊集

国家自然科学基金宁夏自然科学基金

62060102372022AAC05001

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(6)
  • 3