首页|多激励复杂系统声音信号的特征提取方法研究

多激励复杂系统声音信号的特征提取方法研究

扫码查看
为了确定系统的工作状态,通过一种结合变分模态分解(IVMD)与残差网络(ResNet)的新方法来识别不同种类的声音信号,确定系统受到了何种激励,以此判断系统是否正常工作。首先,利用IVMD方法对声音信号进行分解,以中心频率比(CFR)作为评价指标来确定变分模态分解(VMD)的最优K值;然后结合相关系数(CC)和排列熵(AE)的特点,从分解得到的多个本征模态函数(IMF)中选取 3 个关键本征模态函数(IIMF),并将其转换成声音信号图像;最后利用残差网络在图像处理方面的优势对转换后的图像进行训练。实验结果表明,上述方法对声音信号判断识别的准确率达到了99。57%,显著优于其它典型的算法。
Research on Feature Extraction Method for Acoustic Signals in Complex Systems with Multiple Excitations
In order to determine the operating status of the system,a new method combining Variational Modal Decomposition(IVMD)and Residual Network(ResNet)is used to identify different kinds of sound signals and deter-mine what kind of excitation the system is subjected to,so as to determine whether the system is working properly.First,the IVMD method was used to decompose the sound signal,and the center frequency ratio(CFR)was used as the evaluation index to determine the optimal K value of the variational modal decomposition(VMD);Then,the cor-relation coefficient(CC)and alignment entropy(AE)were combined to select three key eigenmode functions(IIMF)from the multiple eigenmode functions(IMF)obtained from the decomposition,and convert them into sound signal im-ages;Finally,the converted images were trained by taking advantage of the residual network in image processing.The experimental results show that the method achieves 99.57%accuracy for sound signal judgment and recognition,which is significantly better than other typical algorithms.

Improved variational modal algorithmsKey eigenmodal functionsResidual networksSound signal image

王浩、余成波、龙畅

展开 >

重庆理工大学电气与电子工程学院,重庆 400000

改进变分模态算法 关键本征模态函数 残差网络 声信号图像

国家自然科学基金项目高端外国专家项目重庆高校优秀(EEMD)

61976030GDW20165200063

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(6)