首页|结合多层次监督与边界损失的显著性目标检测

结合多层次监督与边界损失的显著性目标检测

扫码查看
针对PoolNet网络多次下采样操作易降低空间分辨率、仅使用二分类交叉熵损失函数(BCE)不利于捕捉显著性目标边缘特征,易导致边缘检测精度不高的问题。通过在PoolNet网络解码器的 5 级特征融合模块(fuse)之后分别加入多层次监督模型(MSM),并对5 级MSM的输出分别按照BCE、SSIM与IoU三个损失函数计算值的和作为边界损失函数值,最后将 5级边界损失函数值的平均值作为网络的最终输出损失值,并按照随机梯度下降法进行学习。从而提出一种结合多层次监督与边界损失的显著性目标检测方法:PoolNet-D。在 6 个常用数据集上的对比实验结果表明,提出的PoolNet-D模型在MAE和F-measure评价指标方面均有明显提升。
Saliency Object Detection Combining Multi-Level Supervision and Boundary Loss
Multiple downsampling operations in PoolNet network can easily reduce spatial resolution,and using only binary cross entropy loss function(BCE)is not conducive to capturing salient target edge features,which can easily lead to low edge detection accuracy.In this paper,the multi-level supervision model(MSM)is added after the five-level feature fusion module(fuse)of the PoolNet network decoder,and the sum of the calculated values of BCE,SSIM and IoU loss functions is used as the boundary loss function value for the output of the five-level MSM.The av-erage value of the five-level boundary loss function value is used as the final output loss value of the network,and it is learned using the random gradient descent method.Thus,a new saliency object detection method combining multi-level supervision module with boundary loss function,namely,PoolNet-D,is proposed.The comparative experimental results show that on the six commonly used salient object detection datasets,the PoolNet-D model has significantly improved in terms ofMAE and F-measure evaluation indicators.

Salient object detectionConvolutional neural networkMulti-level supervisionBoundary loss

闫河、沈绍兰、刘灵坤

展开 >

重庆理工大学两江人工智能学院,重庆 401147

显著性目标检测 卷积神经网络 多层次监督 边界损失

国家重点研发计划"智能机器人"重点专项项目国家自然科学基金面上项目重庆市自然科学基金资助项目

2018YFB130860261173184cstc2018jcyjAXO694

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(6)